首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   27篇
  国内免费   13篇
测绘学   9篇
大气科学   24篇
地球物理   123篇
地质学   123篇
海洋学   118篇
天文学   14篇
综合类   12篇
自然地理   4篇
  2022年   2篇
  2021年   6篇
  2020年   8篇
  2019年   12篇
  2018年   22篇
  2017年   17篇
  2016年   30篇
  2015年   23篇
  2014年   23篇
  2013年   32篇
  2012年   18篇
  2011年   29篇
  2010年   27篇
  2009年   20篇
  2008年   13篇
  2007年   16篇
  2006年   23篇
  2005年   28篇
  2004年   18篇
  2003年   10篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
201.
202.
Abstract

Ultrasonic spectroscopy is highly suitable for real-time measurement, in particular for dense particle systems. In the present study, a novel measurement device, namely a portable ultrasonic device (PUD), is designed and manufactured for measuring solid suspension concentration and flow velocity simultaneously with respect to the propagation of ultrasound waves in a solid–liquid mixture at different temperatures. A series of experiments were conducted in the laboratory to obtain the ultrasonic attenuation of kaolin and reservoir sediment solutions within a wide range of concentrations (1000–300 000 mg/L) at various temperatures (15–27°C). The resulting data were regressed to establish linear functions of attenuation and temperature for concentration. The experimental data were compared with theoretical simulated results to show the effect of particle size distribution on concentration measurement. The flow meter part of the PUD was verified by a standard-speed carriage in the towing tank. According to experimental tests by PUD, it was demonstrated that the accuracy for concentration in full scale is ±5%, and the accuracy for flow velocity is ±2%. Compared with sampled data, good agreements were also found by employing the PUD for sediment concentration and flow velocity measurements in turbidity currents during typhoon floods in a reservoir, which demonstrates that the PUD is operable and reliable on site.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Huang, Y.J., Sung, C.C., Lai, J.S., Lee, F.Z., Hwang, G.W., and Tan, Y.C., 2013. Measurement of solid suspension concentration and flow velocity with temperature compensation using a portable ultrasonic device. Hydrological Sciences Journal, 58 (3), 615–626.  相似文献   
203.
This study examined the effect of urbanization on stream hydrology in hillslope watersheds. Ten streams (seven in hillslope and three in gentle slope watersheds) around Austin, Texas were selected for analysis. For each stream, we compared parameters of transfer function (TF) models estimated from daily rainfall and streamflow data collected in two study periods (October 1988–September 1992 and October 2004–September 2008) representing different degrees of watershed urbanization. As expected, the streams became more intermittent as the watersheds were more urbanized in all the study streams. However, the effect of urbanization on peakflow differs between hillslope and gentle slope watersheds. After watershed urbanization, peakflow increased in gentle slope watersheds, but decreased in hillslope watersheds. Based on the results of the TF models, we found that urbanization made stream not flashier but drier in hillslope watersheds. Overpumpage of aquifer has been recognized as a problem that leads to the stream dryness in the study area. However, the overpumpage alone cannot explain the differences in hydrological changes between the two types of watersheds. We attributed the reduced peakflow and stream dryness in the hillslope watersheds to land grading for construction forming stair‐stepped or terraced landscape. Compared with natural hillslope, a stair‐stepped landscape could infiltrate more stormwater by slowing down surface runoff on tread portions of the stair. Our findings suggest that a watershed management scheme should take into account local hydrogeologic conditions to mitigate the stream dryness resulting from urbanization in hillslope watersheds. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
204.
Atmospheric methane, a more effective heat-trapping gas than CO2 that may affect climate change, has its greatest man-made source in the US from municipal solid waste (MSW) landfills. Consequently, the wise management of landfills can reduce these greenhouse gas emissions to the atmosphere. Methane from modern MSW landfills built with composite covers is frequently vented directly to the atmosphere. Biofiltration of landfill gas could oxidize CH4 to CO2 and water. Methane oxidation in old landfills with conventional soil covers can be effective in reducing the amount of CH4 emitted. In this study, comparison of methane emissions from three different landfill covers was conducted. Methane emissions from old landfills constructed with conventional soil covers, modern MSW landfills constructed with composite covers, and modern MSW landfills constructed with composite covers plus biofilters were calculated using the calculated CH4 oxidation rates. The results showed that an average of only 14% of the generated CH4 was emitted from landfills with modern composite covers plus biofilters, and an average of 85% of the generated CH4 was emitted from landfills with conventional covers when 100% of the generated CH4 emissions to the atmosphere from landfills with modern composite covers was assumed. By comparing the CH4 emission rates from three different landfill types, the use of a properly sized biofilter should be an effective technique to reduce CH4 emissions from landfills across the USA and potentially in many other areas of the world.  相似文献   
205.
We quantified the increase in the sediment-water interface created by the burrowing activities of the resident macrofaunal community and its variation with respect to the physical conditions of the habitat on a tidal fat. We investigated environmental factors and dimensions of macrofaunal burrows with respect to tidal height and vegetation during spring and summer at three sites. A resin-casting method was used to quantify the dimensions of all burrows at each site. The dimensions of macrofaunal burrows varied both temporally and spatially and the increase in the sediment-water interface reached a maximum of 311%, ranging from 20 to 255% under different habitat conditions. The sediment-water interface depended on the duration of exposure resulting from tidal height, increased temperatures resulting from seasonality, and marsh plant density. Burrows were deeper and more expansive at both higher tidal levels and higher temperatures in summer. Burrow dimensions were sharply reduced with the disappearance of adult macrofauna in areas where the roots of the marsh plant Suaeda japonica were dense. The significance of this study lies in quantifying the burrow dimensions of the entire macrofaunal community, rather than just a single population, and confirming their spatial and temporal variation with respect to physical conditions of the habitat. Environmental factors responsible for variation in burrow dimensions are discussed.  相似文献   
206.
The temporal dynamics of two seagrass species, Zostera marina and Z. japonica, were monitored monthly in Dadae Bay, Geoje Island, on the southern coast of Korea. Plant morphological characteristics, shoot density, biomass, leaf production, reproductive effort, and environmental characteristics were monitored from July 2001 to July 2002. Zostera japonica occurred in the intertidal zone and Z. marina occurred in the subtidal zone from 0.5 to 2.5 m below the mean low water level. Shoots and rhizomes were significantly larger in Z. marina than in Z. japonica, whereas the shoot density was greater in Z. japonica than in Z. marina. Despite differences in morphology and shoot density, biomass did not differ significantly between the species. Reproduction occurred from April to June in Z. marina and from May to July in Z. japonica. The proportion of reproductive shoots was approximately three times higher in Z. marina than in Z. japonica. Seasonal variation in the biomass of Z. japonica was caused by changes in both shoot size and density, whereas that of Z. marina was mainly caused by changes in shoot length. Leaf production in Z. marina and Z. japonica showed clear seasonal variation, and leaf production in Z. marina (2.6 ± 0.2 g DW·m−2·day−1) was higher than that in Z. japonica (1.7 ± 0.2 g DW·m−2·day−1). The mean plastochrone interval was not significantly different between the two species, whereas the leaf lifetime of Z. marina was longer (69 ± 7.8 days) than that of Z. japonica (59 ± 8.3 days). Our results indicated that seasonal leaf growth patterns in Z. japonica are correlated with irradiance and temperature, whereas those in Z. marina respond most to irradiance. Seasonal changes in irradiance appeared to control the temporal variation in above‐ground biomass in both species.  相似文献   
207.
This paper evaluates whether a thermodynamic ocean-carbon model can be used to predict the monthly mean global fields of the surface-water partial pressure of CO2 (pCO2SEA) from sea surface salinity (SSS), temperature (SST), and/or nitrate (NO3) concentration using previously published regional total inorganic carbon (CT) and total alkalinity (AT) algorithms. The obtained pCO2SEA values and their amplitudes of seasonal variability are in good agreement with multi-year observations undertaken at the sites of the Bermuda Atlantic Timeseries Study (BATS) (31°50’N, 60°10’W) and the Hawaiian Ocean Time-series (HOT) (22°45’N, 158°00’W). By contrast, the empirical models predicted CT less accurately at the Kyodo western North Pacific Ocean Time-series (KNOT) site (44°N, 155°E) than at the BATS and HOT sites, resulting in greater uncertainties in pCO2SEA predictions. Our analysis indicates that the previously published empirical CT and AT models provide reasonable predictions of seasonal variations in surface-water pCO2SEA within the (sub) tropical oceans based on changes in SSS and SST; however, in high-latitude oceans where ocean biology affects CT to a significant degree, improved CT algorithms are required to capture the full biological effect on CT with greater accuracy and in turn improve the accuracy of predictions of pCO2SEA.  相似文献   
208.
During subduction, continental margins experience shortening along with inversion of extensional sedimentary basins. Here we explore a tectonic scenario for the inversion of two-phase extensional basin systems, where the Early-Middle Jurassic intra-arc volcano-sedimentary Oseosan Volcanic Complex was developed on top of the Late Triassic-Early Jurassic post-collisional sequences, namely the Chungnam Basin. The basin shortening was accommodated mostly by contractional faults and related folds. In the basement, regional high-angle reverse faults as well as low-angle thrusts accommodate the overall shortening, and are compatible with those preserved in the cover. This suggests that their spatial and temporal development is strongly dependent on the initial basin geometry and inherited structures.Changes in transport direction observed along the basement-sedimentary cover interface is a characteristic structural feature, reflecting sequential kinematic evolution during basin inversion. Propagation of basement faults also enhanced shortening of the overlying sedimentary cover sequences. We constrain timing of the Late Jurassic-Early Cretaceous(ca. 158-110 Ma) inversion from altered K-feldspar 40 Ar/39 Ar ages in stacked thrust sheets and K-Ar illite ages of fault gouges, along with previously reported geochronological data from the area. This "non-magmatic phase" of the Daebo Orogeny is contemporaneous with the timing of magmatic quiescence across the Korean Peninsula. We propose the role of flat/low-angle subduction of the Paleo-Pacific Plate for the development of the "Laramide-style" basement-involved orogenic event along East Asian continental margin.  相似文献   
209.
To investigate the statistical sensitivity distributions of tropical cyclone (TC) forecasts over the Korean Peninsula, total energy (TE) singular vectors (SVs) were calculated and evaluated over a 10-year period. TESVs were calculated using the fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5) and its tangent linear and adjoint models with a Lanczos algorithm over a 48-h period. Chosen cases were 21 TCs that affected the Korean Peninsula among 230 TCs that were generated in the western North Pacific from 2001 to 2010. Sensitive regions indicated by TESVs were mainly located near mid-latitude troughs and TC centers but varied depending on TC track and environmental conditions such as subtropical high and mid-latitude trough. The cases were classified into three groups by clustering TC tracks based on the finite mixture model. The two groups that passed through the western and southern sea of the Korean Peninsula had maximally sensitive regions in the mid-latitude trough and largely sensitive regions around the TC center, while the other group that passed straight through the eastern sea of the Korean Peninsula had maximally sensitive regions near the northeastern region of the TC center. Vertically, the former two clustered groups had the westerly tilted TESVs and potential vorticity structures under the mid-latitude troughs at the initial time, indicating the TCs were in a baroclinic environment. Conversely, the straight-moving TCs were not in a baroclinic environment. Based on the results in the present study, the TCs moving toward a fixed verification region over the Korean Peninsula have different sensitivity regions and structures according to their moving tracks and characteristic environmental conditions, which may provide guidance for targeted observations of TCs affecting the Korean Peninsula.  相似文献   
210.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号