The studies of Azores seismicity generally show shocks with either normal faulting or right-lateral strike-slip along the ESE direction, compatible with a eastward relative motion of the Eurasian (EU) relative to the African (AF) plate. However, the 1 January 1980 earthquake was interpreted as a clear left-lateral strike-slip shock along the N150E direction. This pattern is difficult to explain in terms of the relative motion between the EU, AF and North American (NA) plates: all available models for the present day movement of this triple junction fail to explain the regional variability in the stress conditions of the area. Here we present data from a 34-day long Ocean Bottom Seismograph array deployment. We show that the seismicity is distributed along a band aligned with the island chain itself, and is concentrated along several faults with an approximate N150E strike, cutting the Azores plateau in all the area covered by the OBS network. The combination of these new results with other geophysical data permits us to conclude that the tectonic setting of the Azores plateau is characterised by the existence of two sets of faults, in the N120E and N150E directions, defining several crustal blocks, whose relative motion accommodates the interaction of the three megaplates. The deformation of these tectonic blocks is probably driven by the shear between the EU and AF plates. This model explains well the spatial variability of the stress conditions in the Azores domain, the combination of dextral and sinistral strike slip mechanisms and the observed seismotectonics of the Azores islands. 相似文献
A new method which produces energy from the ocean by utilizing the density difference of water, by means of a “chimney effect”, is proposed. Density difference of water in the ocean occurs in two ways, namely differences of consistency and water temperature. For instance, fresh river and melting floes and icebergs are pointed out as some origins of the former, while thermal effects of volcanoes and hot springs may account for the latter. Furthermore, sunlight power transmitted into the sea through glass fibre power lines can be an artificial source in the latter case.This paper concentrates on regions near estuaries where low density river water can be piped into the high density ocean. An analysis estimates that the proposed method extracts energy of several thousands or more kW in the above case. 相似文献
In order to understand the penetration process of projectiles into lower-density targets, we carry out hypervelocity impact experiments using low-density (60 mg cm?3) aerogel targets and various types of projectiles, and observe the track formation process in the targets using a high-speed camera. A carrot shaped track, a bulbous, and a “hybrid” one consisting of bulbous and thin parts, are formed. The results of the high-speed camera observations reveal the similarity and differences on the temporal evolution of the penetration depth and maximum diameter of these tracks. At very early stages of an impact, independent of projectile type, the temporal penetration depth is described by hydrodynamic models for the original projectiles. Afterward, when the breakup of projectiles does not occur, intact projectiles continue to penetrate the aerogels. In the case of the breakup of projectiles, the track expands with a velocity of about a sound velocity of the aerogel at final stages. If there are large fragments, they penetrate deeper and the tracks become a hybrid type. The penetration of the large fragments is described by hydrodynamic models. Based on these results, we discuss the excavation near the impact point by shock waves. 相似文献
Hydrogeology Journal - Assessment of the level of activity of advective transport through faults and fractures is essential for guiding the geological disposal of radioactive waste. In this study,... 相似文献
We studied the long-period ground motions in the Osaka sedimentary basin, Japan, which contains a 1- to 3-km thickness of
sediments and is the site of many buildings or construction structures with long-natural period. We simulated the broadband
ground motions likely to be produced by the hypothetical Nankai earthquake: the earthquake expected to give rise to the most
severe long-period ground motion within the basin. For the simulation, we constructed multiscale heterogeneous source models
based on the Central Disaster Management Council of Japan (CDMC) source model and adopted a hybrid computation method in which
long-period motion and short-period motion are computed using a 3-D finite difference method and the stochastic Green’s function
method, respectively. In computing long-period motions, we used a 3-D structure model of the crust and the Osaka sedimentary
basin. The ground motions are estimated to have peak velocities of 50–90 cm/s, prolonged durations exceeding 300 s, and long
predominant periods of 5–10 s in the area with great thickness of sediments. The predominant periods are in agreement with
an approximate evaluation by 4 H/Vs where H and Vs are the thickness of the sediment and the average S wave velocity, respectively. 相似文献
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived. 相似文献
We investigated the influence of dynamical in-consistency of initial conditions on the predictive skill of decadal climate predictions. The investigation builds on the fully coupled global model “Coupled GCM for Earth Simulator” (CFES). In two separate experiments, the ocean component of the coupled model is full-field initialized with two different initial fields from either the same coupled model CFES or the GECCO2 Ocean Synthesis while the atmosphere is initialized from CFES in both cases. Differences between both experiments show that higher SST forecast skill is obtained when initializing with coupled data assimilation initial conditions (CIH) instead of those from GECCO2 (GIH), with the most significant difference in skill obtained over the tropical Pacific at lead year one. High predictive skill of SST over the tropical Pacific seen in CIH reflects the good reproduction of El Niño events at lead year one. In contrast, GIH produces additional erroneous El Niño events. The tropical Pacific skill differences between both runs can be rationalized in terms of the zonal momentum balance between the wind stress and pressure gradient force, which characterizes the upper equatorial Pacific. In GIH, the differences between the oceanic and atmospheric state at initial time leads to imbalance between the zonal wind stress and pressure gradient force over the equatorial Pacific, which leads to the additional pseudo El Niño events and explains reduced predictive skill. The balance can be reestablished if anomaly initialization strategy is applied with GECCO2 initial conditions and improved predictive skill in the tropical Pacific is observed at lead year one. However, initializing the coupled model with self-consistent initial conditions leads to the highest skill of climate prediction in the tropical Pacific by preserving the momentum balance between zonal wind stress and pressure gradient force along the equatorial Pacific.
The Hyuganada region, a forearc region of Southwest Japan, is characterized by several interesting geological and geophysical features, i.e., significant aseismic crustal uplift of 120 m during the past 120 thousand years at the Miyazaki Plain, negative free-air gravity anomalies with the maximum magnitude of −130 mgal, and relatively less cohesive interplate coupling compared with that for off the Shikoku and Kii Peninsula. In order to examine the causes of these observations, we determined a detailed three-dimensional seismic velocity structure based on the seismic data observed by ocean bottom seismometers (OBS) and land stations. P- and S-wave tomographic velocity structures clearly indicate the subducting slab and also the zones of high Poisson's ratio at 25–35 km depth along the coastline of the northeastern part of the Hyuganada. The region with high Poisson's ratio may correspond to the serpentinized mantle wedge as suggested for other mantle wedges, and appears to be coincident with the zone for observed aseismic slips such as the slow-slip and after-slip events. Also, the detection may be related to a relatively weak interplate coupling in the Hyuganada region. The tomographic structures also indicate low velocity zones with a horizontal scale comparable to the Kyushu-Palau Ridge in and around the subducting slab. If we assume that the low velocity zones correspond to the subducted Kyushu-Palau Ridge, then the predicted gravity anomaly due to the density contrast between the low velocity zones and the surrounding region can explain about 60% of the gravity anomaly in the Hyuganada region. The buoyancy is probably an important factor for the crustal uplift observed in the Miyazaki Plain, the steep bending of the subducting slab and the normal fault-type earthquakes around the Hyuganada region. 相似文献