首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
  国内免费   3篇
测绘学   1篇
大气科学   5篇
地球物理   5篇
地质学   23篇
天文学   2篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   8篇
  2016年   2篇
  2015年   6篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  1997年   1篇
排序方式: 共有36条查询结果,搜索用时 0 毫秒
11.
Age determination of paleotsunami sediment from Lombok Island, Indonesia, and surrounding area has been carried out using the 210 Pb method in BATAN Jakarta. The basic theory of this method assumes that weathering of sediments, including paleotsunami sediments, will result in 210 Pb enrichment. The principle of this method is to calculate 210 Pb contents accumulation in a particular sedimentation interval from the surface to the deeper buried sediments. The results are then converted into age or depositional time in years ago unit. The dating results from the paleotsunami sediments of the Gawah Pudak(S8°46’2.91’’, E115°56’34.23’’) and Gili Trawangan areas(S8°21’1.38’’, E116°2’36.6’’) indicate the Gawah Pudak sediments were deposited 37 years ago(c. in 1977)and 22 years ago(c. in 1992). Three paleotsunami sediments from Gili Trawangan were deposited 149 years ago(c. in 1865), 117 years ago(c. in 1897) and 42 years ago(c. in 1972). These results are then compared to the available Indonesian earthquake catalogue data. This study reveals that paleotsunami sediments around Lombok Islands, from older to younger, were caused by the 1857 earthquake(epicentre in Bali Sea; M7; S8°00’09.45’’,E115°29’56.41’’), 1897 earthquake(epicentre in Flores Sea;M5.5; S6°47’59.62’’, E120°48’03.5’’ or Sulu Sea earthquake; M8.5; 70 km NW of Basilan Island), the 1975 earthquake(Nusa Tenggara; S10°6’16.61’’, E123°48’09.39’’), 1977 earthquake(in Waingapu, Sumba; M8.0;S11°5’39.34’’, E118°27’50.86’’) and the 1992 earthquake(Flores; M7.8; S8°28’52.11’’, E121°53’44.3’’).  相似文献   
12.
13.
Petrographic and geochemical data on the sandstones of the Proterozoic intracratonic Kaladgi–Badami basin, southern India are presented to elucidate the palaeoweathering pattern, and composition and tectonics of their provenance. The Kaladgi–Badami basin, hosting the Kaladgi Supergroup, occupies an E–W trending area. The Supergroup unconformably overlies Archaean basement TTG gneisses, granites and greenstones, comprises a cyclic arenite–pelite–carbonate association and is divided into the Bagalkot and Badami Groups. The immature arkosic character of the basal Saundatti Quartzite Member (Bagalkot Group) containing fresh and angular feldspars, along the northern margin of the basin, suggests that during the initial stage of deposition, this part of the basin received sediments from a restricted, uplifted and less weathered source dominated by K-rich granites occurring to the north. In contrast, the Saundatti Quartzite along the southern margin displays a mostly mature, quartz-rich character with less abundant but severely weathered feldspars, and higher SiO2 and CIA but lower Al2O3, TiO2, Rb, Sr, Ba, K2O, K2O/Na2O, Zr/Ni and Zr/Cr. This is interpreted in terms of a tectonically stable, considerably weathered mixed source (Archaean gneisses, granites and greenstones) along the southern fringe of the basin. The highly mature (quartz arenite) Muchkundi Quartzite Member (also of the Bagalkot Group), occurring higher up in the succession, exhibits minor but severely altered feldspars, and higher SiO2, Na2O, CIA, Cr and Ni with lower K2O, Al2O3, TiO2 and K2O/Na2O. This reflects that with the passage of time the source evolved to a uniform, extensively weathered, tectonically stable peneplained provenance which consisted of less evolved TTG gneisses and greenstones. This was followed by closure, deformation and upliftment of the basin hosting the Bagalkot Group and subsequent deposition of the Badami Group. Sandstone Members of this younger Group (Cave-Temple Arenite and Belikhindi Arenite) range widely in mineralogy (quartz arenite to arkose) and chemistry (including CIA), and point to a source that varied from uplifted, less weathered K-rich granites to less evolved, peneplained TTG gneisses and greenstones or even Bagalkot sediments. Variable alteration of feldspars in the Kaladgi sandstones and severe depletion of Ca, Na and Sr in the associated shales indicate a humid tropical (tropical and subtropical) climate facilitating chemical weathering.  相似文献   
14.
Direct information about climate change from meteorological surface air temperature records are available in India only since 1901 A.D. Meteorological surface air temperature (SAT) data for the period 1901–2006 from 49 sites in peninsular India have been combined with the geothermal data from 146 sites to extract a baseline (or pre-observational mean, POM) surface temperature prior to the existence of the observational record in the region. Periodicities of 5, 11 and 22 years in the SAT time series have little influence on the combined analysis to infer long-term climate change. The best estimate of the long-term average temperature for the 19th Century is 0.7 °C lower than the 1961–1990 mean temperature. Considering the additional warming of 0.38°C relative to the 1961–1990 mean over a 10-year window centred on the year 2000, the hybrid POM-SAT method suggests that the total surface warming in peninsular India from mid-1800s to early- 2000s is about 1.1 °C. The study provides new evidence for significant warming prior to the establishment of widespread meteorological stations in peninsular India.  相似文献   
15.
Several volumetrically minor \(\sim \)2.8 Ga anorogenic granites and rhyolites occur along the marginal part of the Singhbhum craton whose origin and role in crustal evolution are poorly constrained. This contribution presents petrographic, geochemical, zircon U–Pb and trace element, and mineral chemical data on such granites exposed in the Pala Lahara area to understand their petrogenesis and tectonic setting. The Pala Lahara granites are calc-alkaline, high-silica rocks and define a zircon U–Pb age of 2.79 Ga. These granites are ferroan, weakly metaluminous, depleted in Al, Ca and Mg and rich in LILE and HFSE. They are classified as A2-type granites with high Y/Nb ratios. Geochemical characteristics (high \(\hbox {SiO}_{2}\) and \(\hbox {K}_{2}\hbox {O}\), very low MgO, Mg#, Cr, Ni and V, negative Eu anomaly, flat HREE and low Sr/Y) and comparison with melts reported by published experimental studies suggest an origin through high-temperature, shallow crustal melting of tonalitic/granodioritic source similar to the \(\sim \)3.3 Ga Singhbhum Granite. Intrusion of the Pala Lahara granites was coeval with prominent mafic magmatism in the Singhbhum craton (e.g., the Dhanjori mafic volcanic rocks and NNE–SSW trending mafic dyke swarm). It is suggested that the \(\sim \)2.8 Ga A-type granites in the Singhbhum craton mark a significant crustal reworking event attendant to mantle-derived mafic magmatism in an extensional tectonic setting.  相似文献   
16.
Dolostone of Vempalle Formation near Tummalapalle hosts large uranium deposit (>100,000 tonnes with an average grade of 0.045%U3O8). It is a unique type of uranium deposit because carbonate formations have been considered to be among the least uraniferous of all the rocks of the Earth’s crust due to mobility of uranium in aqueous fluid in the presence of carbonate and bicarbonate ions. Vempalle dolostone hosts syn-sedimentary uranium mineralization in the form of discrete uranium phases (pitchblende and coffinite) associated with collophane, and adsorbed uranium in organic matter. The organic matter has played dual role of concentrating uranium from solution and also chemically reducing it to pitchhblende and coffinite.  相似文献   
17.
The Koyna region located in the west coast of India is a classic example of reservoir triggered seismicity (RTS) that started soon after the impoundment of the Koyna reservoir in 1962. Previous studies have shown that RTS can be explained in terms of stress and pore pressure changes due to poroelastic response of the rock matrix. The permeability of rock matrix is a key parameter for pore pressure diffusion which is mainly responsible for generation of stress perturbation related to seismicity. Based on the poroelastic theory, we employ 2-D finite element models to simulate the evolution of pore pressure up to 5 years after the reservoir impoundment in 1962, using a range in permeability, 10?16–10?14 m2. Constraints on material properties of Deccan basalt and granitic rocks were taken from available studies. The results show the formation of pore pressure front and its propagation with depth and time since the reservoir impoundment as a function of permeability. While a permeability of 10?16 m2 does not produce any significant change in pore pressure, a ten-fold increase in permeability produces significant changes up to a depth of 2 km only beneath the reservoir after 5 years of impoundment. Permeability values between 10?15 m2 and 10?14 m2 are required to induce critical pore pressure changes in the range 0.1–1 MPa up to depth of 10 km, capable of triggering earthquakes in a critically stressed region. Studies on core samples of granitic basement rock down to a depth of 1522 m in the Koyna region provide evidences of fracture zones that may contribute to water channelization. Direct measurements of material properties through the ongoing deep drilling programme would help to develop more realistic models of RTS.  相似文献   
18.
19.
In situ radioelemental (K, U and Th) analysis and heat production estimates have been made at 59 sites in the Kerala Khondalite Block (KKB) of the Southern Granulite Province (SGP) of India. Together with the in situ analyses on granulites and gneisses previously reported from 28 sites, and heat production estimated from the published geochemical analyses on granites and syenites of the KKB, the new data set allows good characterization of heat production for the major granulite facies rocks and granitoids of the KKB. Garnet biotite gneisses are characterized by high levels of Th and U, with mean values of 60 and 3 ppm, respectively. Khondalites, leptynites and charnockites have slightly lower levels of Th (23, 20 and 22 ppm, respectively) and U (2.9, 2.4 and 0.9 ppm, respectively). The mean K, U, Th abundances for the granites, leucogranites and granitic gneisses ranges from 3.9 to 4.3%, 2.6 to 4.3 ppm, 22 to 50 ppm respectively, and for the syenites 4.8%, 2 ppm and 5.7 ppm. Mean radiogenic heat production values for garnet–biotite gneiss, khondalite, leptynite and charnockite are 5.5, 2.7, 2.4 and 2.2 μW m−3, respectively. For the granites, leucogranites, granitic gneisses and syenites it is 2.6, 3.4, 4.6 and 1.4 μW m−3, respectively. Heat production of granulite facies rocks, which are the most abundant rocks in KKB, correlate well with Th, but less with U, suggesting that variation is caused by Th and U bearing accessory minerals such as monazite and zircon. The high heat production of the KKB granulites are in contrast to the low heat production of the Late Archaean granulites of the Northern Block (NB) of the SGP which are highly depleted in radioelements and also the granulites of Madurai Block (MB) that have higher radioelemental abundances than in the granulites of the NB. The high heat production of the KKB granulites could be due to the nature of protoliths and/or metasomatism associated with Neoproteroic- to- Pan African alkaline magmatic activity represented by alkali granite and syenite–carbonatite emplacements and emplacement of pegmatites.  相似文献   
20.
Sedimentary structures are very useful in paleocurrent analysis and interpretation of siliciclastic shallow marine environment. These interesting sedimentary structures such as parallel bedding, cross bedding, ripples, and mud cracks as well as synaeresis cracks, are best studied in the field. They are formed by a variety of sedimentary processes, including fluid flow, sediment-gravity flow, soft-sediment deformation and biogenic activity. Gulcheru Formation has evidence of interaction of microbial communities with clastic sedimentation during Palaeoproterozoic time. Because of high porosity-permeability of siliciclastics of Gulcheru Formation, palaeontologists do not expect many fossils preserved in such rocks and thus they have been overlooked. Microbially induced sedimentary structures (MISS) are highlighted in the Gulcheru Formation. They are indicative of shallow marine environment. Gulcheru Formation shows alluvial fan to shallow marine shelf environments within a limited thickness of about ~ 110m, which indicates an alluvial plain coast where alluvial deposits are modified by wave forces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号