首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   2篇
  国内免费   3篇
测绘学   6篇
大气科学   5篇
地球物理   25篇
地质学   83篇
海洋学   16篇
天文学   20篇
自然地理   3篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   7篇
  2017年   5篇
  2016年   1篇
  2015年   9篇
  2014年   7篇
  2013年   13篇
  2012年   4篇
  2011年   9篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1961年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
61.
Mesoscale eddies constitute the most energetic component of the variability of ocean currents. An attempt has been made for the detection of oceanic mesoscale eddy signatures over the Southern Indian Oceanic (SIO) regions using the dynamic topography derived from TOPEX/POSEIDON (T/P) altimeter data, by the signal processing technique, called matched filtering. After applying all the ocean and atmospheric corrections, data of a complete cycle of T/P over SIO has been used for detection of eddy signatures. The geoid undulations are removed from the data of corrected sea surface height from T/P and the resulting dynamic topographic data are passed through a matched filter designed to detect a generic eddy signature of Gaussian signal embedded in noise. The filter is optimized to detect eddies with amplitude 20 to 30 cm and diameters roughly 100?250 km. Out of all the analyzed data of T/P orbits over SIO a few examples are presented for brevity. Qualitative verification of eddies is done with some independent T/P sea level anomaly data over the region. The analysis shows that the matched filtering technique is most suitable for monitoring eddy signatures along the subsatellite track instantly over the remote and most hostile regions of the southern global oceans.  相似文献   
62.
In this paper, the ground motion at Guwahati city for an 8.1 magnitude earthquake on Oldham fault in the Shillong plateau has been estimated by stochastic finite-fault simulation method. The corresponding acceleration time histories on rock level at several sites in the epicentral region have been computed. These results are validated by comparing them with the estimates obtained from Medvedev–Sponheuer–Karnik (MSK) intensity observations of 1897 Shillong earthquake. Using the local soil parameters, the simulated rock level acceleration time history at Guwahati city is further amplified up to the ground surface by nonlinear site response analysis. The results obtained are presented in the form of peak ground acceleration (PGA) contour map. The maximum amplification for PGA over Guwahati city is as high as 2.5. Based on the simulated PGA, the liquefaction susceptibility at several locations in the city has been estimated. The results are presented in the form of contours of factor of safety against liquefaction at different depths below the ground surface. It is observed that over a large part of the Guwahati city, the factor of safety against liquefaction is less than one, indicating that the city is highly vulnerable to liquefaction in the event of this earthquake. The contour maps obtained can be used in identifying vulnerable areas and disaster mitigation.  相似文献   
63.
Theoretical Concept to Understand Plan and Design Smooth Blasting Pattern   总被引:1,自引:0,他引:1  
Considering different mechanical cutting tools for excavation of rock, drilling and blasting is said to be inexpensive and at the same time most acceptable and compatible to any geo-excavation condition. Depending upon strength properties of in-situ rock mass, characteristics of joint pattern and required quality of blasting, control blasting techniques viz., pre-split and smooth blasting are commonly implemented to achieve an undamaged periphery rock-wall. To minimize magnitude of damage or overbreak, the paper emphasized that in-situ stresses and re-distribution of stresses during the process of excavation should be considered prior to selection of explosive parameters and implementation of any suitable blast pattern. Rock structure being not massive in nature, the paper firstly explains the influence of discontinuities and design parameters on smooth-wall blasting. Considering the empirical equations for estimation of stress wave’s magnitude and its attenuation characteristics through transmitting medium, the paper has put forward a mathematical model for smooth blasting pattern. The model firstly illustrates that rock burden for each hole should be sub-divided into thin micro strips/slabs to understand the characteristics of wave transmission through the medium and lastly with the help of beam theory of structural dynamics have put forward a mathematical model to analyze and design an effective smooth blasting pattern to achieve an undamaged periphery rock-wall.  相似文献   
64.
We discuss needs in dielectronic recombination data motivated by recent work directed at a quantitative understanding of ion charge states of various elements observed in situ in the solar wind and CMEs. The competing processes of ionization and recombination lead to departures from collision ionization equilibrium. The use of this as a diagnostic of acceleration and heating processes of the solar wind and CMEs is sensitive to the accuracy of the atomic rates in a way that steady state ionization equilibrium plasmas are not. The most pressing need is dielectronic recombination rates for ions Fe8+-12+. These are among the dominant species observed in various regions of the solar wind and CMEs, and in remotely sensed EUV spectra.  相似文献   
65.
Garnet crystallization in metapelites from the Barrovian garnet and staurolite zones of the Lesser Himalayan Belt in Sikkim is modelled utilizing Gibbs free energy minimization, multi‐component diffusion theory and a simple nucleation and growth algorithm. The predicted mineral assemblages and garnet‐growth zoning match observations remarkably well for relatively tight, clockwise metamorphic PT paths that are characterized by prograde gradients of ~30 °C kbar?1 for garnet‐zone rocks and ~20 °C kbar?1 for rocks from the staurolite zone. Estimates for peak metamorphic temperature increase up‐structure toward the Main Central Thrust. According to our calculations, garnet stopped growing at peak pressures, and protracted heating after peak pressure was absent or insignificant. Almost identical PT paths for the samples studied and the metamorphic continuity of the Lesser Himalayan Belt support thermo‐mechanical models that favour tectonic inversion of a coherent package of Barrovian metamorphic rocks. Time‐scales associated with the metamorphism were too short for chemical diffusion to substantially modify garnet‐growth zoning in rocks from the garnet and staurolite zones. In general, the pressure of initial garnet growth decreases, and the temperature required for initial garnet growth was reached earlier, for rocks buried closer toward the MCT. Deviations from this overall trend can be explained by variations in bulk‐rock chemistry.  相似文献   
66.
The importance of Cl in basalt petrogenesis has been recognized, yet constraints on its effect on liquidus crystallization of basalts are scarce. In order to quantify the role of Cl in basaltic systems, we have experimentally determined near-liquidus phase relations of a synthetic Fe–Mg-rich basalt, doped with 0.0–2.5 wt% dissolved Cl, at 0.7, 1.1, and 1.5 GPa. Results have been parameterized and compared with previous data from literature. The effect of Cl on mineral chemistry and liquidus depression is dependent on the starting basaltic composition. The liquidus depression measured for a SiO2-rich, Al2O3-poor basalt is smaller than that observed for a basaltic melt depleted in silica and enriched in FeOT and Al2O3. The effect of Cl on depression of the olivine–orthopyroxene–liquid multiple saturation pressure does not seem to vary with the starting composition of the basaltic liquid. This suggests that Cl may significantly promote the generation of silica-poor, Fe–Al-rich magmas in the Earth, Mars, and the Moon.  相似文献   
67.
The High Himalayan Crystallines (HHCs) provide an excellent natural laboratory to study processes related to crustal melting, crustal differentiation, and the tectonic evolution of mountain belts because partial melting in these rocks occurred under well-defined tectonic boundary conditions (N–S collision of the Indian and the Eurasian plates) and the rocks have not been modified by subsequent metamorphic overprinting. We have used petrogenetic grids, kinetically constrained individual thermobarometry, pseudosection calculations, and reaction histories constrained by textural evidence to determine that the migmatites in the HHC of Sikkim attained peak P–T conditions of 750–800 °C, 9–12 kbar, followed by steep isothermal decompression to 3–5 kbar, and then isobaric cooling to ~600 °C. There may be a trend where rocks to the north [closer to the South Tibetan detachment system (STDS)] attained somewhat higher maximum pressures. The decompression may have been triggered by a reduction in density due to the production of melt (~20 vol%); minor amounts of additional melt may have been produced in individual packages of rock during decompression itself, depending on the exact geometry of the P–T path and the bulk composition of the rock. The stalling of rapid, isothermal exhumation at depths of 10–18 km (3–5 kbar) is related to metamorphic reactions that occur in these rocks. Geospeedometry indicates that at least a two-stage cooling history is required to describe the compositional zoning in all garnets. Both of these stages are rapid (several 100’s °C/my between 800 and 600 °C, followed by several 10’s °C/my between 600 and 500 °C), but there appears to be a spatial discontinuity in cooling history: Rocks to the south (closer to main central thrust) cooled more slowly than rocks to the north (closer to STDS). The boundary between these domains coincides with the discontinuity in age found in the same area by Rubatto et al. (Contrib Mineral Petrol 165:349–372, 2013). Combined with the information on petrologic phase relations, the data reveal the remarkable aspect that the rapid cooling and change of cooling rates all occurred after, rather than during, the rapid exhumation. This result underscores that high-temperature (e.g., >550 °C) cooling is a result of several processes in addition to exhumation and a one-to-one correlation of cooling and exhumation may sometimes be misplaced. Moreover, average cooling rates inferred from the closure temperatures of two isotopic systems should be interpreted judiciously in such nonlinearly cooling systems. While many aspects (e.g., isothermal decompression, isobaric cooling, duration of metamorphism, and cooling rates) of the pressure–temperature history inferred by us are consistent with the predictions of thermomechanical models that produce midcrustal channel flow, the occurrence of blocks with two different cooling histories within the HHC is not explained by currently available models. It is found that while exhumation may be initiated by surface processes such as erosion, the course of exhumation and its rate, at least below depths of ~15 km, is mostly controlled by a coupling between mechanical (density gain/loss) and chemical (metamorphic reactions) processes at depth.  相似文献   
68.
Following the December 2004 and March 2005 major shallow foci inter-plate earthquakes in the north Sumatra region, a slab-tear fault located within the subducting Indian plate ruptured across the West Sunda Trench (WST) within the marginal intra-plate region. Trend, length and movement pattern of this New Tear Fault (NTF) segment is almost identical to another such slab-tear fault mapped previously by Hamilton (1979), located around 160 km south of NTF. Seismic activity along the NTF remained quasi-stable till the end of the year 2011, when an earthquake of magnitude 7.2 occurred on 10.01.2012 just at the tip of NTF, only around ~100 km within the intra-plate domain west of WST. The NTF rupture propagated further towards SSW with the generation of two more large earthquakes on 11.04.2012. The foreshock (10.01.12; M7.2) — mainshock (11.04.12; M 8.6) — aftershock (11.04.12; M 8.2) sequence along with numerous smaller magnitude aftershocks unmistakably define the extension of NTF, a slab-tear fault that results tectonic segmentation of the convergent plate margin. Within the intra-plate domain most earthquakes display consistent left-lateral strike slip mechanism along NNE trending fault plane.  相似文献   
69.
Partial melting in the middle to lower crustal level produces melts of granitic composition during orogeny. Thrusts play a vital role in their exhumation after consolidation of these granitic melts. In this paper we focus on one such granite along the eastern margin of the Delhi Fold Belt (DFB) rocks near Srinagar, Rajasthan, India. This is the first report of granite within the area and holds a key stratigraphic position in the entire rock package. The said granite is found to be intrusive to the DFB metasediments as well as their basement popularly known as the Banded Gneissic Complex (BGC). We disentangle the deformation fabrics seen within the granite and associated DFB metasediments, suggesting that subsequent to emplacement and consolidation, the granite has co-folded along with the country rocks. Three deformational events could be identified within the DFB metasediments namely, D1D, D2D and D3D. The peak metamorphism was achieved in the D1D event. The granite magma is generated and emplaced late syn-kinematic to D1D and thereafter is deformed by D2D and D3D producing D1G and D2G structural fabrics. These compressive deformations resulted in the collapse of the basin; the combined package of DFB rocks and the granite was thrusted eastwards over the basement rocks. The tectonic transport direction during thrusting is suggested eastwards from our structural analysis. Transverse faults developed perpendicular to the length of the granite have led to partitioning of the strain thereby showing a heterogeneity in the development of fabric within it.  相似文献   
70.
The NASA DS1 spacecraft encountered Comet P/Borrelly on September 22, 2001 at a distance of ∼2171 km on the sunward side of the comet. The flyby speed was ∼16.5 km s−1. Using high temporal resolution (50 μs) absolute electric field amplitude measurements from a ∼1 m dipole antenna, new features of plasma clouds created by cometary dust impacts have been detected. The pulses have 1/e exponential decays of ∼650 μs duration, exponentially shaped overshoots with rise times of ∼2 ms, and exponential-shaped overshoot decay times of ∼10 ms. Assuming a plasma temperature of 104 K, these pulse features have been explained as plasma cloud space charge effects from the electron, proton and heavy ion portions of the clouds passing the antenna. Complex pulse shapes were also detected. These are believed to be due to either plasma cloud scattering off of the spacecraft, or to secondary impacts. Small electric pulses of duration 10-15 ms of cometary origin were detected but are presently unexplained. The electric component of the plasma wave spectra at closest approach had an f−2.4 power law shape from 10 Hz to 1 kHz. The electron cyclotron frequency was approximately 1 kHz. One possible explanation of the wave spectrum is that whistler mode waves associated with phase steepened cometary plasma waves are dispersed, leading to the broad spectrum. Finally, based on the present results, a new type of low-cost, large-area dust detector is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号