首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1473篇
  免费   53篇
  国内免费   18篇
测绘学   30篇
大气科学   176篇
地球物理   363篇
地质学   442篇
海洋学   128篇
天文学   268篇
综合类   1篇
自然地理   136篇
  2023年   7篇
  2022年   8篇
  2021年   26篇
  2020年   25篇
  2019年   22篇
  2018年   38篇
  2017年   35篇
  2016年   48篇
  2015年   33篇
  2014年   56篇
  2013年   73篇
  2012年   42篇
  2011年   82篇
  2010年   64篇
  2009年   94篇
  2008年   74篇
  2007年   71篇
  2006年   65篇
  2005年   61篇
  2004年   43篇
  2003年   67篇
  2002年   34篇
  2001年   32篇
  2000年   35篇
  1999年   24篇
  1998年   18篇
  1997年   19篇
  1996年   19篇
  1995年   17篇
  1994年   17篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   12篇
  1989年   8篇
  1988年   10篇
  1987年   13篇
  1986年   15篇
  1985年   22篇
  1984年   26篇
  1983年   25篇
  1982年   27篇
  1981年   11篇
  1980年   23篇
  1979年   14篇
  1978年   12篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1544条查询结果,搜索用时 15 毫秒
61.
62.
Stability and dynamics of the continental tectosphere   总被引:1,自引:0,他引:1  
Continental cratons overlie thick, high-viscosity, thermal and chemical boundary layers, where the chemical boundary layers are less dense than they would be due to thermal effects alone, perhaps because they are depleted in basaltic constituents. If the continental tectosphere is the same age as the overlying Archaean crust, then the continental tectosphere must be able to survive for several billion years without undergoing a convective instability, despite being both cold and thick. Since platforms and shields correlate only weakly with Earth's gravity and geoid anomalies, acceptable models of the continental tectosphere must also satisfy this gravity constraint. We investigate the long-term stability of the continental tectosphere by carrying out a number of numerical convection experiments within a two-dimensional Cartesian domain. We initiate our experiments with a tectosphere (thermal and chemical boundary layers) immersed in a region of uniform composition, temperature, and viscosity, and consider the effects on the stability of the tectosphere of (1) activation energy (used to define the temperature dependence of viscosity), (2) compositional buoyancy, and (3) linear or non-linear rheology. The large lateral thermal gradients required to match oceanic and tectosphere structures initiate the dominant instability, a “drip” which develops at the side of the tectosphere and moves to beneath its center. High activation energies and high background viscosities restrict the amount and rate of entrainment. Compositional buoyancy does not significantly change the flow pattern. Rather, compositional buoyancy slows the destruction process somewhat and reduces the stress within the tectosphere. With a non-Newtonian rheology, this reduction in stress helps to stiffen the tectosphere. In these experiments, dynamical systems that adequately model the present ocean-continent structures have activation energy E*≥180 kJ mole−1 — a value about one third the estimate of activation energy for olivine, E*≈520 kJ mole−1. Although for E*≈520 kJ mole−1, compositional buoyancy is not required for the tectosphere to survive, the joint application of longevity and gravity constraints allows us to reject all models not containing compositional buoyancy, and to predict that the ratio of compositional to thermal buoyancy within the continental tectosphere is approximately unity.  相似文献   
63.
A zircon grain in an orthopyroxene–garnet–phlogopite–zircon–rutile-bearing xenolith from Udachnaya, Siberia, preserves a pattern of crystallographic misorientation and subgrain microstructure associated with crystal–plastic deformation. The zircon grain records significant variations in titanium (Ti) from 2.6 to 30 ppm that corresponds to a difference in calculated Ti-in-zircon temperatures of over several hundred degrees Celsius. The highest Ti concentration is measured at subgrain centres (30 ppm), and Ti is variably depleted at low-angle boundaries (down to 2.6 ppm). Variations in cathodoluminescence coincide with the deformation microstructure and indicate localised, differential enrichment of rare earth elements (REE) at low-angle boundaries. Variable enrichment of U and Th and systematic increase of Th/U from 1.61 to 3.52 occurs at low-angle boundaries. Individual SHRIMP-derived U–Pb ages from more deformed zones (mean age of 1799 ± 40, n = 22) are systematically younger than subgrain cores (mean age of 1851 ± 65 Ma, n = 7), and indicate that open system behaviour of Ti–Th–U occurred shortly after zircon growth, prior to the accumulation of significant radiogenic Pb. Modelling of trace-element diffusion distances for geologically reasonable thermal histories indicates that the observed variations are ~ 5 orders of magnitude greater than can be accounted for by volume diffusion. The data are best explained by enhanced diffusion of U, Th and Ti along deformation-related fast-diffusion pathways, such as dislocations and low-angle (< 5°) boundaries. These results indicate chemical exchange between zircon and the surrounding matrix and show that Ti-in-zircon thermometry and U–Pb geochronology from deformed zircon may not yield information relating to the conditions and timing of primary crystallisation.  相似文献   
64.
Lagrangian retention and flushing are examined by advecting neutrally buoyant point particles within a circulation field generated by a numerical ocean model of Tampa Bay. Large temporal variations in Lagrangian residence time are found under realistic changes in boundary conditions. Two 90-day time periods are examined. The first (P1) is characterized by low freshwater inflow and weak baroclinic circulation. The second (P2) has high freshwater inflow and strong baroclinic circulation. At the beginning of both time periods, 686,400 particles are released uniformly throughout the bay. Issues relating to particle distribution and flushing are examined at three different spatial scales: (1) at the scale of the entire bay, (2) the four major regions within the bay, and (3) at the scale of individual model grid cells. Two simple theoretical models for the particle number over time, N(t), are fit to the particle counts from the ocean model. The theoretical models are shown to represent N(t) reasonably well when considering the entire bay, allowing for straightforward calculation of baywide residence times: 156 days for P1 and 36 days for P2. However, the accuracy of these simple models decreases with decreasing spatial scale. This is likely due to the fact that particles may exit, reenter, or redistribute from one region to another in any sequence. The smaller the domain under consideration, the more this exchange process dominates. Therefore, definitions of residence time need to be modified for “non-local” situations. After choosing a reasonable definition, and removal of the tidal and synoptic signals, the residence times at each grid cell in P1 is found to vary spatially from a few days to 90 days, the limit of the calculation, with an average residence time of 53 days. For P2, the overall spatial pattern is more homogeneous, and the residence times have an average value of 26 days.  相似文献   
65.
66.
A “snap shot” survey of the Mississippi estuary was made during a period of low river discharge, when the estuarine mixing zone was within the deltaic channels. Concentrations of H+, Ca2+, inorganic phosphorus and inorganic carbon suggest that the waters of the river and the low salinity (<5‰) portion of the estuary are near saturation with respect to calcite and sedimentary calcium phosphate. An input of oxidized nitrogen species and N2O was observed in the estuary between 0 and 4‰ salinity. The concentrations of dissolved NH4 + and O2, over most of the estuary, appeared to be influenced by decomposition of terrestrial organic matter in bottom sediments. The estuarine bottom also appears to be a source of CH4 which has been suggested to originate from petroleum shipping and refining operations. Estuarine mixing with offshore Gulf waters was the dominant influence on distributions of dissolved species over most of the estuary (i.e., from salinities >5‰). The phytoplankton abundance (measured as chlorophylla) increased as the depth of the mixed layer decreased in a manner consistent with that expected for a light-limited ecosystem. Fluxes of NO3 ?+NO2 ? and soluble inorganic phosphorus to the Gulf of Mexico were estimated to be 3.4±0.2×103 g N s?1 and 1.9±0.2 g P s?1 respectively, at the time of this study.  相似文献   
67.
Results of pore water and sediment analyses from the western Mexican continental margin strongly suggest the present day formation of apatite. The interstitial water phosphate and fluoride profiles indicate chemical removal at a depth which corresponds to a large maximum in the phosphorus content of the sediments. Apatite is identified within this maximum via X-ray diffraction but is elsewhere undetectable in the core. Radioisotopic thorium, uranium, and radium data support the conclusion that this deposit is modern. The present day depositional environment is consistent with those reported by other workers for phosphorite formation with the exception that pore water magnesium is not depleted below its seawater value.  相似文献   
68.
Soil and stream sediment sampling have been the primary geochemical exploration tools in the Appalachian piedmont to date. However, the great thicknesses of soil and saprolite found in the region coupled with the dense vegetation frequently encountered favor biogeochemistry as an alternative or supplemental method since deep-rooted plants sample closer to bedrock. To evaluate this method, an orientation survey was performed in which soils and vegetation at 17 sites north of Mineral, Virginia, were sampled and analyzed for Ag, Cd, Cu, Pb and Zn. The traverse included stations over the host rocks of massive sulfide mineralization, as well as over apparent “barren” country rock. Samples were analyzed by atomic absorption spectrophotometry using standard digestion and analytical techniques.Both A- and B-horizon soil metals generally appear to be reliable indicators of mineralization, with soils developed over sulfides showing up to three-fold enrichment in metal content relative to the average soils developed on the country rock. Correlation of metal concentrations in vegetation to soil metal concentrations reveal plant concentrations expressed on a dry-weight basis correlate stronger and more frequently to soil metals than do ash-weight concentrations. Copper shows some promise in selected organs and species, Ag appears fair but data are limited to one organ of one species, and plant Pb seems totally unresponsive to soil metal concentrations perhaps because foliar absorption is an important plant uptake mechanism here. However, Zn and Cd in organs of the oak group, especially mature leaves and twigs of the current year's growth show the greatest promise as prospecting tools. They correlate well with soil metals and when compared directly to the geology they reliably reflect mineralization. Although results using White oak were slightly less profound than those obtained from the Black-Red oak group, White oak may be preferred as it is a single, more widespread, easily-identifiable species. Copper and especially Zn although essential elements to plants, do not appear to be “difficult” elements for biogeochemical prospecting in the Appalachian piedmont.  相似文献   
69.
New geoarchaeological and bioarcheological research was undertaken at the open‐air site of Mira, which is buried in deposits of the Second Terrace of the Dnepr River, roughly 15 km downstream from the city of Zaporozhye in Ukraine. Previous excavation of the site revealed two occupation layers dating to ∼32,000 cal BP. The lower layer (II/2) yielded bladelets similar to those of the early Gravettian, while the upper layer (I) contained traces of an artificial shelter and hundreds of bones and teeth of horse (Equus latipes). Mira represents the only firmly dated early Upper Paleolithic (EUP) site in the Dnepr Basin, and occupies a unique topographic setting for the EUP near the center of the broad floodplain of the Dnepr River. The site was visited during a period of floodplain stability, characterized by overbank deposition and weak soil formation under cool climate conditions. Mira was used as a long‐term camp, but also was the locus of large‐mammal carcass processing associated with a nearby kill of a group of horses (Layer I).  相似文献   
70.
A suggestion has been made that enhanced rates of hydrothermal activity during the Eocene could have caused a global warming by adding calcium to the ocean and pumping CO2 into the atmosphere (Owen and Rea, 1984). This phenomenon was purported to be consistent with the predictions of the CO2 geochemical cycle model of Berner, Lasaga and Garrels (1983) (henceforth BLAG). In fact, however, the BLAG model predicts only a weak connection between hydrothermal activity and atmospheric CO2 levels. By contrast, it predicts a strong correlation between seafloor spreading rates and pCO2, since the release rate of CO2 from carbonate metamorphism is assumed to be proportional to the mean spreading rate. The Eocene warming can be conveniently explained if the BLAG model is extended by assuming that the rate of carbonate metamorphism is also proportional to the total length of the midocean ridges from which the spreading originates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号