首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25758篇
  免费   390篇
  国内免费   269篇
测绘学   641篇
大气科学   1965篇
地球物理   5510篇
地质学   8982篇
海洋学   2068篇
天文学   5507篇
综合类   42篇
自然地理   1702篇
  2020年   139篇
  2019年   134篇
  2018年   302篇
  2017年   271篇
  2016年   422篇
  2015年   308篇
  2014年   440篇
  2013年   1202篇
  2012年   531篇
  2011年   811篇
  2010年   660篇
  2009年   929篇
  2008年   857篇
  2007年   823篇
  2006年   839篇
  2005年   741篇
  2004年   787篇
  2003年   733篇
  2002年   748篇
  2001年   609篇
  2000年   622篇
  1999年   587篇
  1998年   562篇
  1997年   568篇
  1996年   470篇
  1995年   465篇
  1994年   443篇
  1993年   413篇
  1992年   381篇
  1991年   328篇
  1990年   380篇
  1989年   299篇
  1988年   343篇
  1987年   377篇
  1986年   327篇
  1985年   485篇
  1984年   525篇
  1983年   532篇
  1982年   422篇
  1981年   419篇
  1980年   438篇
  1979年   381篇
  1978年   396篇
  1977年   346篇
  1976年   377篇
  1975年   341篇
  1974年   380篇
  1973年   365篇
  1972年   233篇
  1971年   186篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
461.
The Biotic Ligand Model (BLM) has proven efficient in predicting the toxicity of a variety of metals to freshwater organisms. Consequently, the US EPA has proposed its use for calculating freshwater copper criteria. This study evaluates the BLM for use in estuarine and marine waters. Studies were conducted using the bivalve, Mytilus sp. and 48-h embryo-larval development chronic estimator test methods. These are the most sensitive taxa and test in the US EPA saltwater copper criteria database. Samples from five locations around the USA were tested. There is a strong relationship between measured and BLM predicted copper EC50s (log transformed data, r2 = 0.76, p < 0.001, n = 44). The BLM predicted within a factor ±2 of measured EC50s in 41 of 44 cases. However, the BLM tends to predict lower EC50s when measured EC50s are approximately 10 μg Cu/L. This may be due to limitations of the metal-dissolved organic matter interaction model.  相似文献   
462.
Apatite dissolution experiments were conducted using both a fluidized bed and stirred tank reactor over a range of pH, temperature, solution saturation state, and on non-carbonated and carbonated apatite compositions: igneous fluorapatite (FAP) and sedimentary carbonate fluorapatite (CFA), respectively. From 2 <pH <6, the rate of release from dissolution of all apatite components [calcium (Ca), phosphorus (P), and fluoride (F)] increased with decreasing pH for FAP. From 6 < pH < 8.5, the FAP dissolution rate is pH independent. Measuring apatite dissolution rates at pH > 8.5 were not possible due to detection limits of the analytical techniques used in this study and the high insolubility of FAP. For the CFA compositions studied, the dissolution rate decreased with increasing pH from 4 < pH < 7. During early stages of the dissolution reaction for both FAP and CFA, mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P and Ca:F being greater than mineral stoichiometric ratios, suggesting that Ca was preferentially released compared to P and F from the mineral structure during the early stages of dissolution. An increase in reacted solution pH accompanies this early elevated release of Ca. As the dissolution reaction proceeded to steady state, dissolution became congruent. When normalized to BET measured surface area, FAP dissolved faster from 4 < pH < 7 compared to CFA. The apparent Arrhenius activation energy (Ea) of FAP dissolution over the temperature range of 25-55°C at pH = 3.0, I = 0.1, and pCO2 = 0 is 8.3 ± 0.2 kcal mol−1. Both the apparent exchange of solution H+ for solid-bound Ca at low pH in the early stage of dissolution and the Ea of dissolution suggest a surface and not a diffusion controlled dissolution reaction for FAP and CFA. The degree of undersaturation of the solution, ΔGR, with respect to FAP was important in determining the dissolution rate. At pH = 3.0, I = 0.1, and pCO2 = 0, the dissolution rate of FAP was ∼ 5× greater in the far-from-equilibrium region compared to the near-equilibrium slope region.A simple apatite weathering model incorporating the experimental results from this study was constructed, and numerical calculations suggest that during the Phanerozoic both the surface area of igneous rock available for weathering and the average global temperature were important factors in determining the P weathering flux from apatite dissolution. It is possible that elevated global temperatures coupled with relatively high surface area of igneous rock during the early- to mid-Paleozoic resulted in elevated P weathering fluxes, which along with climatic evolutionary pressures of the Neoproterozoic, facilitated the radiation of multicellular organisms, large-scale phosphorite deposition, and abundance of calcium phosphate shelled organisms during the early Cambrian.  相似文献   
463.
464.
A major, linear, west-trending deformed zone (The Redbank Zone), 350 km long and up to 20 km wide, can be identified in the Arunta Block immediately north of the Amadeus Basin. The marked linearity of this zone and of the coincident gravity anomaly probably result from thrust-fault movement during the Carboniferous Alice Springs Orogeny. However, in the Ormiston area, there is evidence that the zone originated prior to 1070 m.y. and acted as a major crustal feature controlling the later orogenic event.The Alice Springs Orogeny affected the overlying Proterozoic and Lower Palaeozoic cover rocks as well as the Arunta Block basement. During the orogeny, steep north-dipping thrusts within the Redbank Zone were reactivated causing uplift to the north. These faults penetrated the Heavitree Quartzite—the basal unit of the cover sequence—to drive wedges of basement, with attached veneers of Heavitree Quartzite, for up to 20 km southward within the overlying Bitter Springs Formation. The nappes did not reach the surface or penetrate formations above the Bitter Springs. Accompanying nappe emplacement the Basin to the south rapidly deepened to receive a thick wedge of synorogenic molasse sediments.Gravity, sedimentary and structural features combine to suggest that the Alice Springs orogeny movements reached their maximum on the central part of the northern margin of the Amadeus Basin, in the Ormiston area.  相似文献   
465.
Mantle-derived xenoliths and xenocrysts in Pale-ozoic diamondiferous ki mberlites in Mengyin (Shan-dong Province) and Fuxian (Liaoning Province) showthe presence of a cold,thick lithospheric mantle be-neath the North China craton ( NCC) in the MiddleOrdovician ( Griffin et al ., 1998 ; Menzies et al .,1993 ;Fan and Menzies ,1992) . However ,studies onmantle peridotites captured in the Tertiary to Neo-gene basalts of the NCC have revealed the existenceof a thin, hot and fertile lithosph…  相似文献   
466.
467.
468.
Although the middle section of the Bangong-Nujiang suture zone has been intensively investigated, its tectonic framework and evolution is still controversy. The Pungco ophiolite has a relative complete ophiolitic complex, which is an ideal specimen for studying this tricky problem. LA-ICP-MS U-Pb dating of zircons from the diabasic rock yielded an age of 159.0±2.1 Ma. This age suggests that the Pungco ophiolite was formed in the Late Jurassic, indicating the development of the Late Jurassic ophiolite in the third ophiolitic subzone. The whole-rock major and trace element compositions of diabasic and basaltic rocks exhibit mixed arc and N-MORB geochemical characteristics. Two diabasic samples have (87Sr/86Sr)i values of 0.7055 and 0.7063 and εNd(t) values of 11.28 and 11.84, respectively. The geochemical signatures and formation age of the Pungco ophiolite suggest that this ophiolite was probably produced in an active continental fore-arc setting. It originated from a N-MORB-like depleted mantle source with the involvement of subducted-slab fluids. Considering the regional geological background, the Pungco ophiolite was likely generated during the southward subduction of the Bangong-Nujiang Tethyan oceanic lithosphere beneath the Lhasa terrane, and belongs to a regional archipelagic arc-basin system together with the other Early Jurassic-Early Cretaceous ophiolites from the northern Tibet Lake district. © 2018, Science Press. All right reserved.  相似文献   
469.
Mangrove Lagoon, located on the island of St. Croix, US Virgin Islands (USVI), is one of few actively bioluminescent lagoons in a location experiencing significant anthropogenic impacts. The bioluminescence is due to an abundance of the dinoflagellate Pyrodinium bahamense in the water column. We recovered surface sediments and sediment cores from Mangrove Lagoon to analyze the spatial distribution and temporal variability of P. bahamense cysts in this system. Surface sediment P. bahamense cyst concentrations ranged from 0 to 466 cysts g?1 dry sediment, with higher abundances associated with elevated surface water nutrient concentrations and a mixed terrestrial–marine organic matter source regime. In combination with available bioassay data, we hypothesize that phytoplankton utilize nutrients rapidly and subsequent decay of organic matter makes nutrients available for dinoflagellates at the sediment–water interface in the eastern and northern quadrants of the lagoon. However, the nutrients are rapidly exhausted during counterclockwise lagoon circulation resulting in the decline of primary productivity and dinoflagellate abundance in the western quadrants. Downcore profiles suggest that P. bahamense blooms have been occurring for decades, declining in recent years. No cysts were present in sediments predating dredging activities of the 1960s that created Mangrove Lagoon. Recent reductions in cyst abundance may be the result of limited primary productivity caused by restricted water exchange with Salt River Bay due to shallowing of a sill at the mouth of the lagoon. This research highlights the need for more comprehensive geochemical and fossil analyses to better understand long-term ecological variability and inform conservation efforts of these unique habitats.  相似文献   
470.
Abstract

During the past 50 years, many geological and ore-deposit investigations have led to the discovery of the Fe–P–(Ti)-oxide deposits associated with mafic–ultramafic–carbonatite complexes in the Kuluketage block, northeastern Tarim Craton. In this paper, we discuss the genetic and ore-forming ages, tectonic setting, and the genesis of these deposits (Kawuliuke, Qieganbulake and Duosike). LA-ICP-MS zircon U–Pb dating yielded a weighted mean 206Pb/238U ages of 811?±?5?Ma, 811?±?4?Ma, and 840?±?5?Ma for Kawuliuke ore-bearing pyroxenite, Qieganbulake gabbro and Duosike ore-bearing pyroxenite, respectively. The CL images of the Kawuliuke apatite grains show core–rim structure, suggesting multi-phase crystallisation, whereas the apatite grains from Qieganbulake and Dusike deposits do not show any core–rim texture, suggesting a single-stage crystallisation. LA-ICP-MS apatite 207Pb-corrected U–Pb dating provided weighted mean 206Pb/238U ages of 814?±?21?Ma and 771?±?8?Ma for the Kawuliuke ores, and 810?±?7?Ma and 841?±?7?Ma for Qieganbulake and Duosike ores, respectively. The core–rim texture in apatite by CL imaging as well as two different ore-forming ages in the core and rim of the apatite indicate two metallogenic events for the Kawuliuke deposit. The first metallogenic period was magmatic in origin, and the second period was hydrothermal in origin. The initial ore-forming age of the Kawuliuke Fe–P–Ti mineralisation was ca 814?Ma and the second one was ca 771?Ma. On the other hand, the ore-forming ages of the Qieganbulake and Duosike deposits were ca 810?Ma and ca 841?Ma, respectively. Qieganbulake and Duosike deposits were of magmatic origin. Combined with previous geochronological data and the research on the tectonic background, we infer that the Kawuliuke, Qieganbulake and Duosike Fe–P–(Ti)-oxide deposits were formed in a subduction-related tectonic setting and were the product of subduction-related magmatism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号