首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   823篇
  免费   22篇
  国内免费   12篇
测绘学   25篇
大气科学   68篇
地球物理   197篇
地质学   240篇
海洋学   85篇
天文学   181篇
综合类   8篇
自然地理   53篇
  2022年   3篇
  2021年   4篇
  2020年   12篇
  2019年   10篇
  2018年   20篇
  2017年   15篇
  2016年   24篇
  2015年   17篇
  2014年   28篇
  2013年   59篇
  2012年   44篇
  2011年   36篇
  2010年   27篇
  2009年   39篇
  2008年   31篇
  2007年   40篇
  2006年   28篇
  2005年   32篇
  2004年   54篇
  2003年   33篇
  2002年   45篇
  2001年   28篇
  2000年   27篇
  1999年   20篇
  1998年   21篇
  1997年   13篇
  1996年   18篇
  1995年   24篇
  1994年   6篇
  1993年   7篇
  1992年   4篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   2篇
  1986年   9篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
  1929年   1篇
排序方式: 共有857条查询结果,搜索用时 250 毫秒
21.
22.
23.
Wetland mitigation banking is an American neoliberal environmental policy that has created a functioning market in `ecosystem services', commodities defined using the holistic measures of ecological science. The development of this market is discussed as a project of environmental governance, defined as the nation-state's regulation of ecological relations within its territory towards stabilizing capitalist relations of power and accumulation. I argue that the wetland banking industry serves as a bellwether that presages problems that other strategies of neoliberal environmental governance will experience. Ethnographic, economic and ecological data from the Chicago-area wetland banking industry inform a discussion of two major obstacles to neoliberal strategy: the problem of relying on ecological science to define the unit of trade, and the problem of aligning the somewhat independent relations of law, politics, markets and ecosystems across an array of spatial scales. Theoretical guidance is sought from recent work on `social natures' and from the Regulationist approach to institutional political economics.  相似文献   
24.
Three conflicting models are currently proposed for the location and tectonic setting of the Eurasian continental margin and adjacent Tethys ocean in the Balkan region during Mesozoic–Early Tertiary time. Model 1 places the Eurasian margin within the Rhodope zone relatively close to the Moesian platform. A Tethyan oceanic basin was located to the south bordering a large “Serbo-Pelagonian” microcontinent. Model 2 correlates an integral “Serbo-Pelagonian” continental unit with the Eurasian margin and locates the Tethys further southwest. Model 3 envisages the Pelagonian zone and the Serbo-Macedonian zone as conjugate continental units separated by a Tethyan ocean that was sutured in Early Tertiary time to create the Vardar zone of northern Greece and former Yugoslavia. These published alternatives are tested in this paper based on a study of the tectono-stratigraphy of a completely exposed transect located in the Voras Mountains of northernmost Greece. The outcrop extends across the Vardar zone, from the Pelagonian zone in the west to the Serbo-Macedonian zone in the east.Within the Voras Massif, six east-dipping imbricate thrust sheets are recognised. Of these, Units 1–4 correlate with the regional Pelagonian zone in the west (and related Almopias sub-zone). By contrast, Units 5–6 show a contrasting tectono-stratigraphy and correlate with the Paikon Massif and the Serbo-Macedonian zone to the east. These units form a stack of thrust sheets, with Unit 1 at the base and Unit 6 at the top. Unstacking these thrust sheets places ophiolitic units between the Pelagonian zone and the Serbo-Macedonian zone, as in Model 3. Additional implications are, first, that the Paikon Massif cannot be seen as a window of Pelagonian basement, as in Model 1, and, secondly, Jurassic andesitic volcanics of the Paikon Massif locally preserve a gneissose continental basement, ruling out a recently suggested origin as an intra-oceanic arc.We envisage that the Almopias (Vardar) ocean rifted in Triassic time, followed by seafloor spreading. The Almopias ocean was consumed beneath the Serbo-Macedonian margin in Jurassic time, generating subduction-related arc volcanism in the Paikon Massif and related units. Ophiolites were emplaced onto the Pelagonian margin in the west and covered by Late Jurassic (pre-Kimmeridgian) conglomerates. Other ophiolitic rocks formed within the Vardar zone (Ano Garefi ophiolite, Unit 4) in latest Jurassic–Early Cretaceous time and were not deformed until Early Tertiary time. The Vardar zone finally sutured in the Early Tertiary creating the present imbricate thrust structure of the Voras Mountains.  相似文献   
25.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
26.
We have developed a significant body of new field-based evidence relating to the history of crustal extension in western Turkey. We establish that two of the NE–SW-trending basins in this region, the Gördes and Selendi Basins, whose sedimentary successions begin in the early Miocene, are unlikely to relate to late-stage Alpine compressional orogeny or to E–W extension of Tibetan-type grabens as previously suggested. We argue instead that these basins are the result of earlier (?) late Oligocene, low-angle normal faulting that created approximately N–S “scoop-shaped” depressions in which clastic to lacustine and later tuffaceous sediments accumulated during early–mid-Miocene time, separated by elongate structural highs. These basins were later cut by E–W-trending (?) Plio–Quaternary normal faults that post-date accumulation of the Neogene deposits. In addition, we interpret the Alaşehir (Gediz) Graben in terms of two phases of extension, an early phase lasting from the early Miocene to the (?) late Miocene and a young Plio–Quaternary phase that is still active. Taking into account our inferred earlier phase of regional extension, we thus propose a new three-phase “pulsed extension” model for western Turkey. We relate the first two phases to “roll-back” of the south Aegean subduction zone and the third phase to the westward “tectonic escape” of Anatolia.  相似文献   
27.
Twentieth‐century summer (July–August) temperatures in northern Finland are reconstructed using ring widths, maximum density and stable carbon isotope ratios (δ13C) of Scots pine tree rings, and using combinations of these proxies. Verification is based on the coefficient of determination (r2), reduction of error (RE) and coefficient of efficiency (CE) statistics. Of the individual proxies, δ13C performs best, followed by maximum density. Combining δ13C and maximum density strengthens the climate signal but adding ring widths leads to little improvement. Blue intensity, an inexpensive alternative to X‐ray densitometry, is shown to perform similarly. Multi‐proxy reconstruction of summer temperatures from a single site produces strong correlations with gridded climate data over most of northern Fennoscandia. Since relatively few trees are required (<15) the approach could be applied to long sub‐fossil chronologies where replication may be episodically low. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
28.
The Budyko framework characterizes landscape water cycles as a function of climate. We used this framework to identify regions with contrasting hydroclimatic change during the past 50 years in Sweden. This analysis revealed three distinct regions: the mountains, the forests, and the areas with agriculture. Each region responded markedly different to recent climate and anthropogenic changes, and within each region, we identified the most sensitive subregions. These results highlight the need for regional differentiation in climate change adaptation strategies to protect vulnerable ecosystems and freshwater resources. Further, the Budyko curve moved systematically towards its water and energy limits, indicating augmentation of the water cycle driven by changing vegetation, climate and human interactions. This finding challenges the steady state assumption of the Budyko curve and therefore its ability to predict future water cycles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号