首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   16篇
  国内免费   6篇
测绘学   22篇
大气科学   41篇
地球物理   139篇
地质学   178篇
海洋学   47篇
天文学   140篇
综合类   4篇
自然地理   75篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   8篇
  2018年   14篇
  2017年   10篇
  2016年   12篇
  2015年   12篇
  2014年   24篇
  2013年   34篇
  2012年   33篇
  2011年   34篇
  2010年   26篇
  2009年   31篇
  2008年   29篇
  2007年   33篇
  2006年   21篇
  2005年   31篇
  2004年   44篇
  2003年   28篇
  2002年   40篇
  2001年   25篇
  2000年   24篇
  1999年   21篇
  1998年   19篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   5篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1942年   1篇
排序方式: 共有646条查询结果,搜索用时 140 毫秒
31.
High-resolution seismic reflection profile data show that the modern sediment cover (over the last 150 years) in Georgian Bay is thin and spatially discontinuous. Sediments rich in ragweed pollen, largely derived from siltation linked to land clearing and European settlement, form a thin, discontinuous veneer on the lakebed. Much of the lakebed consists of exposed sediments deposited during the late glacial or early postglacial. Accumulation rates of modern sediments range from < 0 mm/year (net erosion) to ∼3.2 mm/year, often within a few hundred metres spatially. These rates are much lower than those reported for the main basin of Lake Huron and the other Great Lakes, and are attributed to the low sediment supply. Only a few small rivers flow into Georgian Bay, and most of the basin is surrounded by bedrock of Precambrian gneiss and granite to the east, and Silurian dolostone, limestone and shale to the west. Thick deposits of Pleistocene drift, found on the Georgian Bay shoreline only between Meaford and Port Severn, are the main sediment source for the entire basin at present. Holocene to modern sediments are even absent from some deep basins of Georgian Bay. These findings have implications for the ultimate fate of anthropogenic contaminants in Georgian Bay. While microfossil assemblages in the ragweed-rich sediments record increased eutrophication over the last 150 years, most pollutants generated in the Georgian Bay catchment are not accumulating on the lakebed and are probably exported from the Bay.  相似文献   
32.
The simulation of solute transport in rivers is frequently based on numerical models of the Advection-Dispersion Equation. The construction of reliable computational schemes, however, is not necessarily easy. The paper reviews some of the most important issues in this regard, taking the finite volume method as the basis of the simulation, and compares the performance of several types of scheme for a simple case of the transport of a patch of solute along a uniform river. The results illustrate some typical (and well known) deficiencies of explicit schemes and compare the contrasting performance of implicit and semi-Lagrangian versions of the same schemes. It is concluded that the latter have several benefits over the other types of scheme.  相似文献   
33.
This study focuses on how the variability of land surface temperature and vegetation density at the SGP ARM-CART site changes over episodic (day to day) and seasonal time scales using AVHRR satellite data. Four drying periods throughout the year are analyzed. Land surface temperature had an erratic relationship with time exhibiting no deterministic pattern from day-to-day or season-to-season. Furthermore, it did not exhibit spatial pattern persistence. On the other hand, vegetation density had a consistent spatial pattern and temporal decay during average length drying periods (less than 7 days) as well as within a season. However, there were distinct differences in the seasonal pattern of variation between winter and growing seasons. In addition, the paper highlights a methodology to quantify the relationships that exist at the land surface between the primary parameter of interest and the controlling variables.  相似文献   
34.
In this study we assess the feasibility of remotely measuring canopy biochemistry, and thus the potential for conducting large-scale mapping of habitat quality. A number of studies have found nutrient composition of eucalypt foliage to be a major determinant of the distribution of folivorous marsupials. More recently it has been demonstrated that a specific group of secondary plant chemicals, the diformylphloroglucinols (DFPs), are the most important feeding deterrents, and are thus vital determinants of habitat quality. We report on the use of laboratory spectroscopy to attempt to identify one such DFP, sideroxylonal-A, in the foliage of Eucalyptus melliodora, one of the few eucalypt species browsed by folivorous marsupials. Reflectance spectra were obtained for freeze-dried, ground leaves using near infrared spectroscopy (NIRS) and for both oven-dried and fresh whole leaves using a laboratory-based (FieldSpec) spectroradiometer. Modified partial least squares (MPLS) regression was used to develop calibration equations for sideroxylonal-A concentration based on the reflectance spectra transformed as both the first and second difference of absorbance (Log 1/R). The predictive ability of the calibration equations was assessed using the standard error of calibration statistic (SECV). Coefficients of determination (r2) were highest for the ground leaf spectra (0.98), followed by the fresh leaf and dry leaf spectra (0.94 and 0.87, respectively). When applied to independent validation sub-sets, sideroxylonal-A was most accurately predicted from the ground leaf spectra (r2 = 0.94), followed by the dry leaf and fresh leaf spectra (0.72 and 0.53, respectively). Two spectral regions, centred on 674 nm and 1394 nm, were found to be highly correlated with sideroxylonal-A concentration for each of the three spectral data sets studied. Results from this study suggest that calibration equations derived from modified partial least squares regression may be used to predict sideroxylonal-A concentration, and hence leaf palatability, of Eucalyptus melliodora trees, thereby indicating that the remote estimation of habitat quality of eucalypt forests for marsupial folivores is feasible.  相似文献   
35.
Aerobic biodegradation of vapor-phase petroleum hydrocarbons was evaluated in an intact soil core from the site of an aviation gasoline release. An unsaturated zone soil core was subjected to a flow of nitrogen gas, oxygen, water vapor, and vapor-phase hydrocarbons in a configuration analogous to a biofilter or an in situ bioventing or sparging situation. The vertical profiles of vapor-phase hydrocarbon concentration in the soil core were determined by gas chromatography of vapor samples. Biodegradation reduced low influent hydrocarbon concentrations by 45 to 92 percent over a 0.6-m interval of an intact soil core. The estimated total hydrocarbon concentration was reduced by 75 percent from 26 to 7 parts per million. Steady-state concentrations were input to a simple analytical model balancing advection and first-order biodegradation of hydrocarbons. First-order rate constants for the major hydrocarbon compounds were used to calibrate the model to the concentration profiles. Rate constants for the seven individual hydrocarbon compounds varied by a factor of 4. Compounds with lower molecular weights, fewer methyl groups, and no quaternary carbons tended to have higher rate constants. The first-order rate constants were consistent with kinetic parameters determined from both microcosm and tubing cluster studies at the field site.  相似文献   
36.
The significance and validity of integrating data obtained from a variety of analytical techniques to understand, elucidate and model kerogen's complex chemical structure is reported here using degradative (open and closed system pyrolysis, chemical oxidation), non-degradative (13C CP/MAS NMR) and optical (incident white light and blue light) methods. Seven Cambrian Alum Shale samples, ranging in maturity from immature to post-mature with respect to petroleum generation, were studied and were chosen for their simple geological history, uniform organic matter type and high organic carbon content. The Alum Shale kerogens, which primarily consist of algal organic matter, liberate low molecular weight gaseous and aromatic compounds on pyrolysis and give mostly branched dicarboxylic acids on chemical oxidation. 13C NMR spectroscopy shows that the Alum Shale kerogens are anomalously rich in oxygen-bearing functional groups (such as C = O, ArCO, CHO, CHxO), most of which apparently remain intact within the kerogen macro-molecule (KMM) through the diagenetic and catagenetic stages. Fragments released by different degradative techniques are quantified and the aromaticity (fa), O/C and relative proportions of various carbon types estimated by 13C NMR. A synthesis of these data has allowed us to better understand the chemistry of the Alum Shale kerogen.  相似文献   
37.
38.
Stratigraphic shifts in the oxygen isotopic (18O) and trace element (Mg and Sr) composition of biogenic carbonate from tropical lake sediment cores are often interpreted as a proxy record of the changing relation between evaporation and precipitation (E/P). Holocene 18O and Mg and Sr records from Lakes Salpetén and Petén Itzá, Guatemala were apparently affected by drainage basin vegetation changes that influenced watershed hydrology, thereby confounding paleoclimatic interpretations. Oxygen isotope values and trace element concentrations in the two lowland lakes were greatest between ~ 9000 and 6800 14C-yr BP, suggesting relatively high E/P, but pollen data indicate moist conditions and extensive forest cover in the early Holocene. The discrepancy between pollen- and geochemically-inferred climate conditions may be reconciled if the high early Holocene 18O and trace element values were controlled principally by low surface runoff and groundwater flow to the lake, rather than high E/P. Dense forest cover in the early Holocene would have increased evapotranspiration and soil moisture storage, thereby reducing delivery of meteoric water to the lakes. Carbonate 18O and Mg and Sr decreased between 7200 and 3500 14C-yr BP in Lake Salpetén and between 6800 and 5000 14C-yr BP in Lake Petén Itzá. This decline coincided with palynologically documented forest loss that may have led to increased surface and groundwater flow to the lakes. In Lake Salpetén, minimum 18O values (i.e., high lake levels) occurred between 3500 and 1800 14C-yr BP. Relatively high lake levels were confirmed by 14C-dated aquatic gastropods from subaerial soil profiles ~ 1.0–7.5 m above present lake stage. High lake levels were a consequence of lower E/P and/or greater surface runoff and groundwater inflow caused by human-induced deforestation.  相似文献   
39.
Lithostratigrahic and mineralogic analyses of sediments from hypersaline Bainbridge Crater Lake, Galápagos Islands, provide evidence of past El Niño frequency and intensity. Laminated sediments indicate that at least 435 moderate to very strong El Niño events have occurred since 6100 14C yr BP (7130 cal yr BP), and that frequency and intensity of events increased at about 3000 14C yr BP (3100 cal yr BP). El Niño activity was present between 6100 and 4000 14C yr BP (4600 cal yr BP) but infrequent. The Bainbridge record indicates that there has been considerable millennial-scale variability in El Niño since the mid-Holocene.  相似文献   
40.
An overview of toxicant identification in sediments and dredged materials   总被引:1,自引:0,他引:1  
The identification of toxicants affecting aquatic benthic systems is critical to sound assessment and management of our nation's waterways. Identification of toxicants can be useful in designing effective sediment remediation plans and reasonable options for sediment disposal. Knowledge of which contaminants affect benthic systems allows managers to link pollution to specific dischargers and prevent further release of toxicant(s). In addition, identification of major causes of toxicity in sediments may guide programs such as those developing environmental sediment guidelines and registering pesticides, while knowledge of the causes of toxicity which drive ecological changes such as shifts in benthic community structure would be useful in performing ecological risk assessments. To this end, the US Environmental Protection Agency has developed tools (toxicity identification and evaluation (TIE) methods) that allow investigators to characterize and identify chemicals causing acute toxicity in sediments and dredged materials. To date, most sediment TIEs have been performed on interstitial waters. Preliminary evidence from the use of interstitial water TIEs reveals certain patterns in causes of sediment toxicity. First, among all sediments tested, there is no one predominant cause of toxicity; metals, organics, and ammonia play approximately equal roles in causing toxicity. Second, within a single sediment there are multiple causes of toxicity detected; not just one chemical class is active. Third, the role of ammonia is very prominent in these interstitial waters. Finally, if sediments are divided into marine or freshwater, TIEs perforMed on interstitial waters from freshwater sediments indicate a variety of toxicants in fairly equal proportions, while TIEs performed on interstitial waters from marine sediments have identified only ammonia and organics as toxicants, with metals playing a minor role. Preliminary evidence from whole sediment TIEs indicates that organic compounds play a major role in the toxicity of marine sediments, with almost no evidence for either metal or ammonia toxicity. However, interpretation of these results may be skewed because only a small number of interstitial water (n = 13) and whole sediment (n = 5) TIEs have been completed. These trends may change as more data are collected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号