全文获取类型
收费全文 | 226篇 |
免费 | 13篇 |
国内免费 | 2篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 27篇 |
地球物理 | 66篇 |
地质学 | 88篇 |
海洋学 | 23篇 |
天文学 | 11篇 |
综合类 | 1篇 |
自然地理 | 21篇 |
出版年
2024年 | 1篇 |
2022年 | 2篇 |
2021年 | 6篇 |
2020年 | 5篇 |
2019年 | 10篇 |
2018年 | 12篇 |
2017年 | 8篇 |
2016年 | 14篇 |
2015年 | 9篇 |
2014年 | 8篇 |
2013年 | 32篇 |
2012年 | 18篇 |
2011年 | 23篇 |
2010年 | 12篇 |
2009年 | 16篇 |
2008年 | 10篇 |
2007年 | 6篇 |
2006年 | 12篇 |
2005年 | 9篇 |
2004年 | 2篇 |
2003年 | 5篇 |
2002年 | 2篇 |
2001年 | 2篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 2篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1990年 | 1篇 |
1988年 | 2篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 2篇 |
1983年 | 1篇 |
排序方式: 共有241条查询结果,搜索用时 15 毫秒
61.
Stephanie H. Urióstegui Richard K. Bibby Bradley K. Esser Jordan F. Clark 《水文研究》2017,31(6):1382-1397
Identifying aquifer vulnerability to climate change is of vital importance in the Sierra Nevada and other snow‐dominated basins where groundwater systems are essential to water supply and ecosystem health. Quantifying the component of new (current year's) snowmelt in groundwater and surface water is useful in evaluating aquifer vulnerability because significant annual recharge may indicate that streamflow will respond rapidly to annual variability in precipitation, followed by more gradual decreases in recharge as recharge declines over decades. Hydrologic models and field‐based studies have indicated that young (<1 year) water is an important component of streamflow. The goal of this study was to utilize the short‐lived, naturally occurring cosmogenic isotope sulfur‐35 (35S) to quantify new snowmelt contribution to groundwater and surface waters in Sagehen Creek Basin (SCB) and Martis Valley Groundwater Basin (MVGB) located within the Tertiary volcanics of the central Sierra Nevada, CA. Activities of 35S were measured in dissolved sulfate (35SO42?) in SCB and MVGB snowpack, groundwater, springs, and streamflow. The percent of new snowmelt (PNS) in SCB streamflow ranged from 0.2 ± 6.6% during baseflow conditions to 14.0 ± 3.4% during high‐flow periods of snowmelt. Similar to SCB, the PNS in MVGB groundwater and streamflow was typically <30% with the largest fractions occurring in late spring or early summer following peak streamflow. The consistently low PNS suggests that a significant fraction of annual snowmelt in SCB and MVGB recharges groundwater, and groundwater contributions to streamflow in these systems have the potential to mitigate climate change impacts on runoff. 相似文献
62.
Stephanie Pincetl 《Urban geography》2018,39(9):1431-1434
I argue that the tension between cities and nation states go through the countryside, or rural areas, at least in the U.S. Further, cities are decidedly constrained in their abilities to effectuate many of the changes associated with them: addressing climate change, economic inequality and more. What is missing is the way in which rural alienation from economic prosperity plays out politically. 相似文献
63.
Stephanie A. Higgins 《Hydrogeology Journal》2016,24(3):587-600
Most of the world’s major river deltas are sinking relative to local sea level. The effects of subsidence can include aquifer salinization, infrastructure damage, increased vulnerability to flooding and storm surges, and permanent inundation of low-lying land. Consequently, determining the relative importance of natural vs. anthropogenic pressures in driving delta subsidence is a topic of ongoing research. This article presents a review of knowledge with respect to delta surface-elevation loss. The field is rapidly advancing due to applications of space-based techniques: InSAR (interferometric synthetic aperture radar), GPS (global positioning system), and satellite ocean altimetry. These techniques have shed new light on a variety of subsidence processes, including tectonics, isostatic adjustment, and the spatial and temporal variability of sediment compaction. They also confirm that subsidence associated with fluid extraction can outpace sea-level rise by up to two orders of magnitude, resulting in effective sea-level rise that is one-hundred times faster than the global average rate. In coming years, space-based and airborne instruments will be critical in providing near-real-time monitoring to facilitate management decisions in sinking deltas. However, ground-based observations continue to be necessary for generating complete measurements of surface-elevation change. Numerical modeling should seek to simulate couplings between subsidence processes for greater predictive power. 相似文献
64.
65.
66.
Steven R. Fassnacht Graham A. Sexstone Amir H. Kashipazha Juan Ignacio López‐Moreno Michael F. Jasinski Stephanie K. Kampf Benjamin C. Von Thaden 《水文研究》2016,30(11):1708-1717
During the melting of a snowpack, snow water equivalent (SWE) can be correlated to snow‐covered area (SCA) once snow‐free areas appear, which is when SCA begins to decrease below 100%. This amount of SWE is called the threshold SWE. Daily SWE data from snow telemetry stations were related to SCA derived from moderate‐resolution imaging spectroradiometer images to produce snow‐cover depletion curves. The snow depletion curves were created for an 80 000 km2 domain across southern Wyoming and northern Colorado encompassing 54 snow telemetry stations. Eight yearly snow depletion curves were compared, and it is shown that the slope of each is a function of the amount of snow received. Snow‐cover depletion curves were also derived for all the individual stations, for which the threshold SWE could be estimated from peak SWE and the topography around each station. A station's peak SWE was much more important than the main topographic variables that included location, elevation, slope, and modelled clear sky solar radiation. The threshold SWE mostly illustrated inter‐annual consistency. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
67.
Sources of elevated salinity in the Mississippi River Alluvial Aquifer, south-central Louisiana, USA
Stephanie E. WelchJeffrey S. Hanor 《Applied Geochemistry》2011,26(8):1446-1451
Salinization is a process impacting groundwater quality and availability across much of southern Louisiana, USA. However, a broad divergence of opinion exists regarding the causes of this elevated salinity: updip-migrating marine waters from the Gulf of Mexico, saline fluids migrating up fault planes, movement of water from salt domes, and/or remnant seawater from the last major marine transgression. The Mississippi River Alluvial Aquifer (MRAA) in south-central Louisiana is recharged by the Mississippi River, and there are discharge zones to the west and east. Recharge waters from the Mississippi River are fresh, but Cl− levels in the western portions of the aquifer are as high as 1000 mg/L. The aquifer is an important source of water for several municipalities and industries, but prior to this study the source(s) of the elevated salinity or whether the salinization can be remediated had not been determined.The low Br/Cl ratios in the groundwaters are consistent with a saline endmember produced by subsurface dissolution of salt domes, not a marine source. The H and O isotopic systematics of the aquifer waters indicate meteoric sources for the H2O, not marine waters or diagenetically-altered deep brines. The westward salinization of aquifer water represents a broad regional process, instead of contamination by point sources. Mapping of spatial variations in salinity has permitted the identification of specific salt domes whose subsurface dissolution is producing waters of elevated salinity in the aquifer. These include the Bayou Choctaw and St. Gabriel domes, and possibly the Bayou Blue dome. Salinization is a natural, on-going process, and the potential for remediation or control is slight, if not non-existent. 相似文献
68.
Morrisey DJ Turner SJ Mills GN Williamson RB Wise BE 《Marine environmental research》2003,55(2):113-136
Contaminants derived from urban runoff have been shown to accumulate in estuarine sediments, reaching concentrations potentially capable of causing biological effects. Demonstration of effects, however, is difficult due to strong natural environmental gradients and the effects of past or present point-sources of contamination. We used multivariate methods to test two hypotheses relating to the effects of urban-derived contaminants on estuarine benthic communities. First, that patterns of distribution and abundance of benthic invertebrates in two urbanised estuaries would be different from those in two non-urbanised estuaries. Second, that the distributions of benthic invertebrates within and among the four estuaries would be related to those of urban-derived contaminants. Concentrations of contaminants were larger in estuaries with urbanised catchments and concentrations of Cu, Pb, Zn and DDT in some samples exceeded those at which biological effects may be expected to appear. Tests of differences in composition of benthic communities among estuaries showed that the two urban estuaries were not significantly different, but that they differed from both rural estuaries, which also differed from each other. Distributions of benthic invertebrates were significantly related to those of environmental variables, and were ordinated along axes that correlated with both natural environmental variables (nature of the sediment, position in estuary) and contaminants. Differences in faunas between the urban and non-urban estuaries were not, however, clear-cut and nor were relationships between faunal assemblages and environmental variables (including contaminants) consistent between two times of sampling. 相似文献
69.
Thomas K. Frazer Sky K. Notestein Charles A. Jacoby Chanda Jones Littles Stephanie R. Keller Robert A. Swett 《Estuaries and Coasts》2006,29(6):943-953
Hurricanes and other major storms cause acute changes in salinity within Florida's streams and rivers. Winddriven tidal surges
that increase salinities may have long-lasting effects on submersed aquatic vegetation (SAV) and the associated fauna. We
investigated potential effects of salinity pulses on SAV in Kings Bay, Florida, by subjecting the three most common macrophytes,Vallisneria americana, Myriophyllum spicatum., andHydrilla verticillata, to simulated salinity pulses. In Kings Bay, we documented changes in salinity during three storms in September 2004 and
measured biomass and percent cover before and after these storms. During experiments, macrophytes were exposed to salinities
of 5‰, 15‰, or 25‰ for 1, 2, or 7 d, with a 28-d recovery period in freshwater. Relative to controls, plants subjected to
salinities of 5‰ exhibited few significant decreases in growth and no increase in mortality. All three species exhibited decreased
growth in salinities of 15‰ or 25‰.H. verticillata, exhibited 100% mortality at 15‰ and 25‰, irrespective of the duration of exposure.M. spicatum andV. american exhibited increased mortality after 7-d exposures to 15‰ or any exposure to 25‰ Maximum daily salinities in Kings Bay approached
or exceeded 15‰ after each of the three storms, with pulses generally lasting less than 2 d. Total aboveground biomass and
percent cover of vascular plants, were reduced following the storms.M. spicatum exhibited an 83% decrease in aboveground biomass and an 80% decrease in percent cover.H. verticillata exhibited a 47% and 15% decline in biomass and percent cover, respectively.V. americana, exhibited an 18% increase in aboveground biomass and a 37% increase in percent cover, which suggests greater tolerance of
salinity pulses and release from competition with the invasiveH. verticillata andM. spicatum. Our results indicate that rapid, storm-induced pulses of high salinity can have important consequences for submersed aquatic
vegetation, restoration efforts, and management of invasive species. 相似文献
70.
Criteria used to identify Fe2+-Fe3+ and Fe2+-Ti4+ intervalence charge transfer absorption bands in electronic spectra are reviewed and compared to the characteristics of unperturbed Fe2+ crystal field bands and those that are intensified by interaction with Fe3+. Band energy is the least definitive diagnostic criterion. Changes in band intensity with temperature are also of limited value. Large widths are the most reliable characteristic of charge transfer bands. New optical absorption spectra are presented for euclase, as well as 80 K spectra of rockbridgeite, babingtonite and lazulite. Comparison of optical spectra to magnetic susceptibility measurements for rockbridgeite and babingtonite provides support for recent theories regarding the effect of magnetic coupling on the variation of charge transfer intensity with temperature. 相似文献