首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   13篇
  国内免费   2篇
测绘学   4篇
大气科学   27篇
地球物理   66篇
地质学   88篇
海洋学   23篇
天文学   11篇
综合类   1篇
自然地理   21篇
  2024年   1篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   12篇
  2017年   8篇
  2016年   14篇
  2015年   9篇
  2014年   8篇
  2013年   32篇
  2012年   18篇
  2011年   23篇
  2010年   12篇
  2009年   16篇
  2008年   10篇
  2007年   6篇
  2006年   12篇
  2005年   9篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有241条查询结果,搜索用时 0 毫秒
121.
Crater densities on planetary surfaces allow assessing relative ages but so far firm calibration of so‐called cratering‐chronology models is available only for the Moon and limited to the past 4.1 billion years. Most planetary geological time scales are still model‐dependent, and essentially constrained by meteorite ages or by comparison to (dynamical) solar system evolution models. Here we describe in situ calibration of the Martian cratering chronology using cosmogenic and radiogenic isotope ages obtained by the NASA Curiosity rover. We determined the cratering‐rate ratio between Moon and Mars for recent times, and extended the calibration of cratering rates to earlier times than those based exclusively on lunar data. Our preferred interpretation supports monotonic flux decay since at least 4.24 Ga and likely since about 4.45 Ga, implying orbital migration of the giant planets, and its direct, transient, dynamical effect on the planetesimal populations was initiated early. But only Martian Sample Return will provide strongly needed capability for distinction of the different models currently available.  相似文献   
122.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
123.
Uncertainty in the estimation of hydrologic export of solutes has never been fully evaluated at the scale of a small‐watershed ecosystem. We used data from the Gomadansan Experimental Forest, Japan, Hubbard Brook Experimental Forest, USA, and Coweeta Hydrologic Laboratory, USA, to evaluate many sources of uncertainty, including the precision and accuracy of measurements, selection of models, and spatial and temporal variation. Uncertainty in the analysis of stream chemistry samples was generally small but could be large in relative terms for solutes near detection limits, as is common for ammonium and phosphate in forested catchments. Instantaneous flow deviated from the theoretical curve relating height to discharge by up to 10% at Hubbard Brook, but the resulting corrections to the theoretical curve generally amounted to <0.5% of annual flows. Calibrations were limited to low flows; uncertainties at high flows were not evaluated because of the difficulties in performing calibrations during events. However, high flows likely contribute more uncertainty to annual flows because of the greater volume of water that is exported during these events. Uncertainty in catchment area was as much as 5%, based on a comparison of digital elevation maps with ground surveys. Three different interpolation methods are used at the three sites to combine periodic chemistry samples with streamflow to calculate fluxes. The three methods differed by <5% in annual export calculations for calcium, but up to 12% for nitrate exports, when applied to a stream at Hubbard Brook for 1997–2008; nitrate has higher weekly variation at this site. Natural variation was larger than most other sources of uncertainty. Specifically, coefficients of variation across streams or across years, within site, for runoff and weighted annual concentrations of calcium, magnesium, potassium, sodium, sulphate, chloride, and silicate ranged from 5 to 50% and were even higher for nitrate. Uncertainty analysis can be used to guide efforts to improve confidence in estimated stream fluxes and also to optimize design of monitoring programmes. © 2014 The Authors. Hydrological Processes published John Wiley & Sons, Ltd.  相似文献   
124.
Fresh water resources within the Kingdom of Saudi Arabia are a rare and precious commodity that must be managed within a context of integrated water management. Wadi aquifers contain a high percentage of the naturally occurring fresh groundwater in the Kingdom. This resource is currently overused and has become depleted or contaminated at many locations. One resource that could be used to restore or enhance the fresh water resources within wadi aquifers is treated municipal waste water (reclaimed water). Each year about 80 percent of the country's treated municipal waste water is discharged to waste without any beneficial use. These discharges not only represent a lost water resource, but also create a number of adverse environmental impacts, such as damage to sensitive nearshore marine environments and creation of high-salinity interior surface water areas. An investigation of the hydrogeology of wadi aquifers in Saudi Arabia revealed that these aquifers can be used to develop aquifer recharge and recovery (ARR) systems that will be able to treat the impaired-quality water, store it until needed, and allow recovery of the water for transmittal to areas in demand. Full-engineered ARR systems can be designed at high capacities within wadi aquifer systems that can operate in concert with the natural role of wadis, while providing the required functions of additional treatment, storage and recovery of reclaimed water, while reducing the need to develop additional, energy-intensive desalination to meet new water supply demands.  相似文献   
125.
One of the simplest location models in terms of its constraint structure in location‐allocation modeling is the location set‐covering problem (LSCP). Although there have been a variety of geographic applications of the set‐covering problem (SCP), the use of the SCP as a facility location model is one of the most common. In the early applications of the LSCP, both potential facility sites as well as demand were represented by points discretely located in geographic space. The advent of geographic information systems (GIS), however, has made possible a greater range of object representations that can reduce representation error. The purpose of this article is to outline a methodology using GIS and K = 3 central place lattices to solve the LSCP when demand is continuously distributed over a bounded area and potential facility sites have not been defined a priori. Although, demand is assumed to exist over an area, it is shown how area coverage can be accomplished by the coverage of a point pattern. Potential facility site distributions based on spacings that are powers of one‐third the coverage distance are also shown to provide more efficient coverage than arbitrarily chosen spacings. Using GIS to make interactive adjustments to an incomplete coverage also provides an efficient alternative to smaller spacings between potential facility sites for reducing the number of facilities necessary for complete coverage.  相似文献   
126.
In many mountain basins, river discharge measurements are located far away from runoff source areas. This study tests whether a basic snowmelt runoff conceptual model can be used to estimate relative contributions of different elevation zones to basin‐scale discharge in the Cache la Poudre, a snowmelt‐dominated Rocky Mountain river. Model tests evaluate scenarios that vary model configuration, input variables, and parameter values to determine how these factors affect discharge simulation and the distribution of runoff generation with elevation. Results show that the model simulates basin discharge well (NSCE and R >0.90) when input precipitation and temperature are distributed with different lapse rates, with a rain‐snow threshold parameter between 0 and 3.3 °C, and with a melt rate parameter between 2 and 4 mm °C?1 d?1 because these variables and parameters can have compensating interactions with each other and with the runoff coefficient parameter. Only the hydrograph recession parameter can be uniquely defined with this model structure. These non‐unique model scenarios with different configurations, input variables, and parameter values all indicate that the majority of basin discharge comes from elevations above 2900 m, or less than 25% of the basin total area, with a steep increase in runoff generation above 2600 m. However, the simulations produce unrealistically low runoff ratios for elevations above 3000 m, highlighting the need for additional measurements of snow and discharge at under‐sampled elevations to evaluate the accuracy of simulated snow and runoff patterns. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
127.
The digital elevation model (DEM) has become an essential tool for an increasing array of mountain runoff analyses, particularly the derivation and mapping of stream channel networks. This study examines how well commonly applied DEM‐based channel derivation methods at different spatial resolutions can represent the channel network for a glaciated Rocky Mountain headwater catchment. The specific objectives are to (1) examine how differences in gridded DEM resolution affect spatially distributed values of local slope, specific contributing area, and topographic wetness index derived from both eight and infinite directional flow algorithms, (2) map the actual stream channel network to examine the influence of surface variables on channel initiation, and (3) assess accuracy of DEM‐derived networks compared with the field surveyed network. Results show that for the same contributing area threshold, increasing grid cell size leads to increased channelization of modeled networks. A plot of local slope versus contributing area reveals a negative relationship similar to that of prior studies in un‐glaciated areas but with breaks in slope at contributing areas that are too small to represent thresholds for channelization. Field survey results and evaluation of DEM‐derived channel networks suggest that channel network formation is not clearly related to surface topographic variables at Loch Vale. Digitally derived channel networks do not accurately predict low order channel locations, but approximations of the channel network with drainage density and headward extent of channelization similar to the observed network can be derived with both a 1 m and 10 m DEM using a contributing area threshold of approximately 4x104 m2. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
128.
Because of the importance of snow for river discharge in mountain regions, hydrological research often focuses on seasonally snow-covered zones. However, in many basins the majority of the land surface area is intermittently snow-covered. Discharge monitoring in these areas is less common, so their contributions to downstream rivers remain largely unknown. We evaluated hydrological differences between three intermittently snow-covered (mean annual Jan 1–Jul 3 snow persistence <60%) and two seasonally snow-covered headwater catchments in the Colorado Front Range. We compared water balance variables to evaluate how and why discharge differs between the snow zones and estimated the relative contributions from each snow zone to regional river discharge. We focused on water years 2016–2019 and used a combination of in situ sensors and regional climate datasets. Annual discharge from the intermittent snow zone was low for all three catchments (10–77 mm), despite covering a wide range in annual snow persistence (25%–64%), whereas annual discharge from the seasonal snow zone was up to 73 times higher. Soil moisture in the seasonal snow zone was above field capacity for longer periods of time than in the intermittent snow zone, and the intermittent snow zone was uniquely subject to soil freezing (up to 102 days per year). For most of the year, potential evapotranspiration exceeded rainfall and snowmelt inputs in the intermittent snow zone, but was lower than rainfall and snowmelt inputs in the seasonal snow zone. This is likely a primary driver of the differences in soil moisture and discharge for catchments with a seasonal versus intermittent snow cover. Despite the large difference in discharge between these two snow zones, the intermittent snow zone contributed about a quarter of the discharge in the regional river, highlighting the importance of studying discharge generation across all elevations.  相似文献   
129.
General circulation models (GCMs) have demonstrated success in simulating global climate, and they are critical tools for producing regional climate projections consistent with global changes in radiative forcing. GCM output is currently being used in a variety of ways for regional impacts projection. However, more work is required to assess model bias and evaluate whether assumptions about the independence of model projections and error are valid. This is particularly important where models do not display offsetting errors. Comparing simulated 300-hPa zonal winds and precipitation for the late 20th century with reanalysis and gridded precipitation data shows statistically significant and physically plausible associations between positive precipitation biases across all models and a marked increase in zonal wind speed around 30°N, as well as distortions in rain shadow patterns. Over the western United States, GCMs project drier conditions to the south and increasing precipitation to the north. There is a high degree of agreement between models, and many studies have made strong statements about implications for water resources and about ecosystem change on that basis. However, since one of the mechanisms driving changes in winter precipitation patterns appears to be associated with a source of error in simulating mean precipitation in the present, it suggests that greater caution should be used in interpreting impacts related to precipitation projections in this region and that standard assumptions underlying bias correction methods should be scrutinized.  相似文献   
130.
Ji  Fei  Evans  Jason P.  Di Virgilio  Giovanni  Nishant  Nidhi  Di Luca  Alejandro  Herold  Nicholas  Downes  Stephanie M.  Tam  Eugene  Beyer  Kathleen 《Climate Dynamics》2020,55(9-10):2453-2468

The vertical temperature profile in the atmosphere reflects a balance between radiative and convective processes and interactions with the oceanic and land surfaces. Changes in vertical temperature profiles can affect atmospheric stability, which in turn can impact various aspects of weather systems. In this study, we analyzed recent-past trends of temperature over the Australian region using a homogenized monthly upper-air temperature dataset and four reanalysis datasets (NCEP, ERA-Interim, JRA-55 and MERRA). We also used outputs of 12 historical and future regional climate model (RCM) simulations from the NSW/ACT (New South Wales/Australian Capital Territory) Regional Climate Modelling (NARCliM) project and 6 RCM simulations from the CORDEX (Coordinated Regional Downscaling Experiment) Australasian project to investigate projected changes in vertical temperature profiles. The results show that the currently observed positive trend in the troposphere and negative trend in the lower stratosphere will continue in the future with significant warming over the whole troposphere and largest over the middle to upper troposphere. The increasing temperatures are found to be latitude-dependent with clear seasonal variations, and a strong diurnal variation for the near surface layers and upper levels in tropical regions. Changes in the diurnal variability indicate that near surface layers will be less stable in the afternoon leading to conditions favoring convective systems and more stable in the early morning which is favorable for temperature inversions. The largest differences of future changes in temperature between the simulations are associated with the driving GCMs, suggesting that large-scale circulation plays a dominant role in regional atmospheric temperature change.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号