首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   28篇
  国内免费   1篇
测绘学   6篇
大气科学   44篇
地球物理   76篇
地质学   162篇
海洋学   28篇
天文学   65篇
综合类   5篇
自然地理   30篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   12篇
  2013年   25篇
  2012年   16篇
  2011年   24篇
  2010年   23篇
  2009年   34篇
  2008年   22篇
  2007年   24篇
  2006年   21篇
  2005年   21篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   11篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1959年   1篇
排序方式: 共有416条查询结果,搜索用时 312 毫秒
321.
There is growing recognition in the human dimensions research community that climate change impact studies must take into account the effects of other ongoing global changes. Yet there has been no systematic methodology to study climate change vulnerability in the context of multiple stressors. Using the example of Indian agriculture, this paper presents a methodology for investigating regional vulnerability to climate change in combination with other global stressors. This method, which relies on both vulnerability mapping and local-level case studies, may be used to assess differential vulnerability for any particular sector within a nation or region, and it can serve as a basis for targeting policy interventions.  相似文献   
322.
323.
Stratospheric ozone reduction,solar UV-B radiation and terrestrial ecosystems   总被引:13,自引:0,他引:13  
Stratospheric ozone reduction is occurring and will continue to increase in magnitude into the next century. Yet, the consequences for terrestrial ecosystems of the increased solar UV-B (280–320 nm) radiation resulting from total column ozone reduction are not understood. Based on studies of higher plant response to UV-B, several possible consequences for ecosystems include decreased primary production, altered plant species composition, and altered secondary chemistry with implications for herbivory, litter decomposition and biogeochemical cycles. However, like the assessment of increased atmospheric CO2, extrapolation from studies with isolated plants to ecosystem function is very tenuous at best. Very few UV-B studies have dealt with multispecies systems. Most of the UV-B research in the past two decades (since the first suggestions of ozone reduction) has been conducted as short-term experiments in growth chambers and greenhouses where the unnatural spectral balance of radiation can lead to unrealistic conclusions. Technical difficulties in suitable measurement and manipulation of UV-B radiation also complicate the conduct of reliable experiments. This essay surveys and categorizes some 300 papers from the past 20 years on this subject, draws general conclusions from the research and offers some recommendations with respect to ecosystem consequences.  相似文献   
324.
During the EUROTRAC Ground Based Cloud Experiment (GCE) 1990, a newly developed HODAR (Holographic Droplet and Acrosol Recording) was operated for the first time to measure cloud droplet size distributions by recording Fraunhofer in-line holograms of small cloud sample volumes in situ and analyzing the holographic images in the laboratory.This technical note compares the resulting size distributions with those obtained from two FSSP-100 laser optical particle counters. For all holograms analyzed during the GCE90 field experiment, the size distributions obtained from the two different methods agree well. Additionally, the liquid water contents (LWC) were measured directly by a Gerber particulate volume monitor PVM-100. The LWC calculated from the measured droplet size distributions deviate from the PVM-100 data.  相似文献   
325.
Stable organic carbon and nitrogen isotopes can be used to interpret past vegetation patterns and ecosystem qualities. Here we present these proxies for two loess-palaeosol sequences from the southern Carpathian Basin to reconstruct the palaeoenvironment during the past 350 ka and establish regional commonalities and differences. Before now, isotopic studies on loess sequences from this region were only conducted on deposits from the last glacial cycle. We conducted methodological tests involving the complete decalcification of the samples prior to stable isotope analyses. Two decalcification methods (fumigation method and wet chemical acidification), different treatment times, and the reproducibility of carbon isotope analyses were tested. Obtained results indicate that the choice of the decalcification method is important for organic carbon stable isotope analyses of loess-palaeosol sequences because ratios vary by more than 10‰ between the wet chemical and fumigation methods, due to incomplete carbonate removal by the latter. Therefore, we suggest avoiding the fumigation method for studies on loess-palaeosol sequences. In addition, our data show that samples with TOC content <0.2% bear increased potential for misinterpretation of their carbon isotope ratios. For our sites, C3-vegetation is predominant and no palaeoenvironmental shifts leading to a change of the dominant photosynthesis pathway can be detected during the Middle to Late Pleistocene. Furthermore, the importance of further stable nitrogen isotope studies is highlighted, since this proxy seems to reflect past precipitation patterns and reveals favourable conditions in the southern Carpathian Basin, especially during interstadials.  相似文献   
326.
327.
An investigation of groundwater table fluctuations induced by rainfall should consider interactions between the liquid and gas phases in soils. In this study, a water‐air two‐phase flow model was initially verified by simulating an infiltration experiment. It was then employed to model the interactions between liquid and gas phases regarding actions of airflow on the groundwater table and the fluctuations of the phreatic level and water level in the well induced by rainfall. The effects of airflo7w caused by rainfall on phreatic level fluctuations were also studied quantitatively by comparing the results obtained using the proposed model with those obtained from a water single‐phase flow model. The simulation results show that in addition to actual recharge, compressed airflow in unsaturated zones causes the phreatic level to increase, but the rise in the phreatic level is lower than that in the pore‐air pressure head in unsaturated zones due to the mitigation of capillary fringe. The existence of airflow enhances the phreatic level rise during and after rainfall. In addition, the water level in the well, pushed by the phreatic level fluctuations, varies similarly to the phreatic level, but it experiences somewhat delayed and slightly attenuated. The Lisse effect precisely reflects the phreatic level fluctuations before actual recharge. Furthermore, the fluctuations in the phreatic level and water level in the well and the contributions of airflow to phreatic level fluctuations are affected by many factors: rain intensity, initial moisture, overlying aquitard, groundwater table depths, and screen depths of the well.  相似文献   
328.
Recent observations indicate that >99% of the small bodies in the solar system reside in its outer reaches—in the Kuiper Belt and Oort Cloud. Kuiper Belt bodies are probably the best‐preserved representatives of the icy planetesimals that dominated the bulk of the solid mass in the early solar system. They likely contain preserved materials inherited from the protosolar cloud, held in cryogenic storage since the formation of the solar system. Despite their importance, they are relatively underrepresented in our extraterrestrial sample collections by many orders of magnitude (~1013 by mass) as compared with the asteroids, represented by meteorites, which are composed of materials that have generally been strongly altered by thermal and aqueous processes. We have only begun to scratch the surface in understanding Kuiper Belt objects, but it is already clear that the very limited samples of them that we have in our laboratories hold the promise of dramatically expanding our understanding of the formation of the solar system. Stardust returned the first samples from a known small solar system body, the Jupiter‐family comet 81P/Wild 2, and, in a separate collector, the first solid samples from the local interstellar medium. The first decade of Stardust research resulted in more than 142 peer‐reviewed publications, including 15 papers in Science. Analyses of these amazing samples continue to yield unexpected discoveries and to raise new questions about the history of the early solar system. We identify nine high‐priority scientific objectives for future Stardust analyses that address important unsolved problems in planetary science.  相似文献   
329.
Previously undocumented, migrating submarine canyons have developed in the Pearl River Mouth Basin along the northern continental margin of the South China Sea from the middle Miocene to present. A grid of high-resolution, 2-D multi-channel seismic profiles calibrated by borehole information permits documentation of these northeastward migrating submarine canyons, as the result of the interplay of gravity flows and bottom currents. The modern canyons have lengths of 30–60 km, widths of 1–5.7 km, and relief of 50–300 m in water depths of 450–1500 m. Buried ancient submarine canyon successions were originally eroded by basal erosional discontinuities and partially filled by canyon thalweg deposits. These are overlain by lateral inclined packages and hemipelagic drape deposits. Basal erosional discontinuities and thalweg deposits are probably created principally by turbidity currents and filled with turbidites. Lateral inclined packages likely were formed by along-slope bottom currents. The evolution of these migrating submarine canyons reveals that northeastward bottom currents have consistently occurred at least from the middle Miocene to present in the study area. It might further imply that thermohaline intermediate water circulation of the South China Sea has been anti-cyclonic from the middle Miocene to present. The initiation of migrating submarine canyons possibly signals commencement of strong bottom currents after the middle Miocene in the South China Sea. The intensification of bottom currents also possibly may reflect shoaling of the major ocean seaways and increased vigor in oceanic circulation forced by global cooling after the middle Miocene.  相似文献   
330.
Observations of CO2 concentration at a mountaintop in the Colorado Rockies in summer show a large diurnal variability with minimum CO2 concentrations found between 10:00 and 18:00 MST. Simulations are performed with a mesoscale model to examine the effects of atmospheric structure and large-scale flows on the diurnal variability. In the simulations initialized without large-scale winds, the CO2 minimum occurs earlier compared to the observations. Upslope flows play an important role in the presence of this early (pre-noon) minimum while the timing and magnitude of the minimum depend only weakly on the temperature structure. An increase in large-scale flow has a noticeable impact on the diurnal variability with a more gradual decrease in daytime CO2 concentration, similar to summer-averaged observations. From the idealized simulations and a case study, it is concluded that multi-scale flows and their interactions have a large influence on the observed diurnal variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号