The study of the torsional response of buildings in the inelastic range of behaviour is of great interest since the ability of structures to resist strong earthquakes mainly relies on their ductility and capacity for energy dissipation. Furthermore, an examination of the performance of structures during past earthquakes demonstrates that plan-asymmetric buildings suffered greater damage due to torsional response. The paper deals with this subject by analysing a model which idealizes a one-storey building with resisting elements oriented along two perpendicular directions. In addition to the parameters of the elastic behaviour, the inelastic system response depends on full yield capacity and plan-wise strength distribution. The influence of the criterion adopted for the design of resisting elements on local ductility demand and damage has been evaluated by parametric analysis. In particular, a comparison has been carried out between systems with equal design levels for all elements and systems with design levels dependent on the element location. For a given elastic behaviour and total capacity, the strength distributions in plan have been defined which minimize ductility demand and structural damage. Finally, based on these findings, responses from models designed according to several seismic codes have been compared. 相似文献
In this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, was tested using the Water Erosion Prediction Project database. This database includes measurements of flow velocity, water depth, cross section area, wetted perimeter, and bed slope that were made in rills shaped on experimental sites distributed across the continental United States. In particular, three different experimental conditions (only rainfall, only flow, and rain with flow) were examined, and for each condition, the theoretically based relationship for estimating the Γ function of the power velocity profile was calibrated. The results established that (a) the Darcy‐Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the flow resistance increases with the effect of rainfall impact. 相似文献
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation. 相似文献
A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0–6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L’Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.
The diversity of epiphytic lichens and mercury concentrations in lichen samples were measured to monitor the release of airborne pollutants from the industrial exploitation of geothermal resources in the Mt. Amiata area (Italy). The lichen biodiversity showed a general condition of moderate environmental alteration around the geothermal power plants, contrasting with the low environmental alteration of the remaining sites investigated. According to the accumulated Hg in lichen thalli, it was possible to estimate mean Hg and H2S concentrations in the air, which resulted in very good agreement with values measured instrumentally. Based on these data and the correlation between lichen diversity values and Hg concentrations in lichens, it was possible to calculate the threshold of 8 μg/m3 H2S as responsible for the worsening from low to moderate environmental alteration according to the biodiversity of epiphytic lichens, and to infer that around geothermal power plants, although not toxic to humans, H2S concentrations are such to alter the nasal quality of the air. Based on the growth rate of X. parietina, it was possible to convert Hg concentrations into estimates of average Hg deposition rates, which showed fluxes of the order of 65–100 mg/ha/y, indicating a dispersions factor of about 104 for the Hg emitted from the geothermal power plants. 相似文献
In 2007–2008, we installed on Mt. Etna two deep tilt stations using high resolution, self-leveling instruments. These installations
are a result of accurate instrument tests, site selection, drilling and sensor positioning that has allowed detecting variations
related to the principal diurnal and semidiurnal tides for first time on Mt. Etna using tilt data. 相似文献
A multidisciplinary geological and compositional investigation allowed us to reconstruct the occurrence of flank eruptions
on the lower NE flank of Stromboli volcano since 15 ka. The oldest flank eruption recognised is Roisa, which occurred at ~15 ka
during the Vancori period, and has transitional compositional characteristics between the Vancori and Neostromboli phases.
Roisa was followed by the San Vincenzo eruption that took place at ~12 ka during the early stage of Neostromboli period. The
eruptive fissure of San Vincenzo gave rise to a large scoria cone located below the village of Stromboli, and generated a
lava flow, most of which lies below sea level. Most of the flank eruptions outside the barren Sciara del Fuoco occurred in
a short time, between ~9 and 7 ka during the Neostromboli period, when six eruptive events produced scoria cones, spatter
ramparts and lava flows. The Neostromboli products belong to a potassic series (KS), and cluster in two differently evolved
groups. After an eruptive pause of ~5,000 years, the most recent flank eruption involving the NE sector of the island occurred
during the Recent Stromboli period with the formation of the large, highly K calc-alkaline lava flow field, named San Bartolo.
The trend of eruptive fissures since 15 ka ranges from N30°E to N55°E, and corresponds to the magma intrusions radiating from
the main feeding system of the volcano. 相似文献