首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   863篇
  免费   33篇
  国内免费   6篇
测绘学   13篇
大气科学   78篇
地球物理   229篇
地质学   390篇
海洋学   49篇
天文学   103篇
自然地理   40篇
  2022年   6篇
  2021年   12篇
  2020年   16篇
  2019年   13篇
  2018年   38篇
  2017年   29篇
  2016年   26篇
  2015年   27篇
  2014年   38篇
  2013年   53篇
  2012年   36篇
  2011年   46篇
  2010年   49篇
  2009年   49篇
  2008年   36篇
  2007年   37篇
  2006年   25篇
  2005年   22篇
  2004年   27篇
  2003年   14篇
  2002年   7篇
  2001年   19篇
  2000年   16篇
  1999年   6篇
  1998年   11篇
  1997年   14篇
  1996年   12篇
  1995年   15篇
  1994年   9篇
  1993年   9篇
  1991年   9篇
  1990年   8篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   8篇
  1983年   8篇
  1982年   7篇
  1981年   6篇
  1980年   7篇
  1979年   8篇
  1978年   6篇
  1977年   6篇
  1974年   5篇
  1922年   4篇
  1914年   7篇
  1913年   4篇
  1912年   4篇
  1911年   4篇
  1910年   5篇
排序方式: 共有902条查询结果,搜索用时 15 毫秒
111.
Summary Air pollution problem in the Czech Republic is very complex due to large number of factors as turbulent dispersion and chemical reactions concurring in the status of the PBL. For this 3D distribution of pollutants is a key information that cannot be given by conventional monitoring stations. Combined use of DIAL lidar and sodar can give access to such information. Case studies of air pollutants transport are presented using 3D concentration fields of NO2 and ozone measured by lidar and meteorological conditions monitored by Doppler Sodar.  相似文献   
112.
Climate changes observed in recent decades are analyzed, and the respective climate-related tendencies of changes in heat supply, moistening, and productivity of the agrosphere that determine the natural resourse of potential Russia are determined. The grain crop yield trends are used additionally as climate change indicators. It is shown that climate changes observed in the last 30 years promote the increase in potential agriculture productivity in most of the Russian Federation, where not less than 85% of agricultural products are produced. At the same time, the increase in climate aridity is observed in several regions of Siberia and Chernozem Center, which results in a reduced productivity of agriculture.  相似文献   
113.
Sensitivity studies with regional climate models are often performed on the basis of a few simulations for which the difference is analysed and the statistical significance is often taken for granted. In this study we present some simple measures of the confidence limits for these types of experiments by analysing the internal variability of a regional climate model run over West Africa. Two 1-year long simulations, differing only in their initial conditions, are compared. The difference between the two runs gives a measure of the internal variability of the model and an indication of which timescales are reliable for analysis. The results are analysed for a range of timescales and spatial scales, and quantitative measures of the confidence limits for regional model simulations are diagnosed for a selection of study areas for rainfall, low level temperature and wind. As the averaging period or spatial scale is increased, the signal due to internal variability gets smaller and confidence in the simulations increases. This occurs more rapidly for variations in precipitation, which appear essentially random, than for dynamical variables, which show some organisation on larger scales.  相似文献   
114.
Abstract

In this study, the internal circulation structures of the 14 July 1987 intense mesoscale convective system (MCS) are investigated using an improved high‐resolution version of the Canadian regional finite‐element model. It is found that although the MCS is characterized by a leading convective line followed by a trailing stratiform rainband, the associated circulation structures differ substantially from those in the classical midlatitude squall system. These include the rapid propagation and separation of the leading convection from the trailing rainband, the development of a surface‐based instead of an elevated rear‐to‐front descending flow and a shallow front‐to‐rear ascending flow associated with the stratiform precipitation, the generation of low‐ and mid‐level rather than mid‐ to upper‐level stratiform cloudiness and the development of a strong anticyclonic vorticity band at the back edge of the stratiform region. It is shown that the trailing stratiform rainband is dynamically forced by frontogenetical processes, and aided by the release of conditional symmetric instability and local orographical lifting. The intense leading and trailing circulations result from latent heat released by the convective and explicit cloud schemes, respectively. Sensitivity experiments reveal that the proper coupling of these two cloud schemes is instrumental in obtaining a realistic prediction of the above‐mentioned various mesoscale components. Vorticity budget calculations show that tilting of horizontal vorticity contributes the most to the amplification of the anticyclonic vorticity band, particularly during the squall's incipient stage. The sensitivity of the simulated squall system to other model physical parameters is also examined.  相似文献   
115.
Abstract

This study reports on the implementation of an interactive mixed‐layer/thermodynamic‐ice lake model coupled with the Canadian Regional Climate Model (CRCM). For this application the CRCM, which uses a grid mesh of 45 km on a polar stereographic projection, 10 vertical levels, and a timestep of 15 min, is nested with the second generation Canadian General Circulation Model (GCM) simulated output. A numerical simulation of the climate of eastern North America, including the Laurentian Great Lakes, is then performed in order to evaluate the coupled model. The lakes are represented by a “mixed layer” model to simulate the evolution of the surface water temperature, and a thermodynamic ice model to simulate evolution of the ice cover. The mixed‐layer depth is allowed to vary spatially. Lake‐ice leads are parametrized as a function of ice thickness based on observations. Results from a 5‐year integration show that the coupled CRCM/lake model is capable of simulating the seasonal evolution of surface temperature and ice cover in the Great Lakes. When compared with lake climatology, the simulated mean surface water temperature agrees within 0.12°C on average. The seasonal evolution of the lake‐ice cover is realistic but the model tends to underestimate the monthly mean ice concentration on average. The simulated winter lake‐induced precipitation is also shown, and snow accumulation patterns on downwind shores of the lakes are found to be realistic when compared with observations.  相似文献   
116.
Wetlands are highly dynamic and productive systems that have been under increased pressure from changes in land use and water management strategies. In Eastern Africa, wetlands provide resources at multiple spatial and temporal levels through farming, fishing, livestock ownership and a host of other ecosystem services that sustain the local economy and individual livelihoods. As part of a broader effort to describe future development scenarios for East African coastal wetlands, this qualitative study focuses on understanding the processes by which river water depletion has affected local food production systems in Kenya's Tana River Delta over the past 50 years, and how this situation has impacted residents’ livelihoods and well-being. Interviews performed in six villages among various ethnic groups, geographical locations and resource profiles indicated that the agro-ecological production systems formerly in place were adapted to the river's dynamic flooding patterns. As these flooding patterns changed, the local population diversified and abandoned or adopted various farming, fishing and livestock-rearing techniques. Despite these efforts, the decrease in water availability affected each subcomponent of the production systems under study, which led to their collapse in the 1990s. Water depletion negatively impacted local human well-being through the loss of food security. The current study provides a detailed account of the dynamics of agro-ecological production systems facing the effects of river water depletion in a wetland-associated environment in Sub-Saharan Africa.  相似文献   
117.
Results of simulation of radiation, cloud cover, surface air temperature, sea-level pressure, and hydrological regime components for Russia with the help of an ensemble of CMIP3 global climate models is analyzed. Despite a large spread among the models, the CMIP3 AOGCM ensemble simulations of the key characteristics of the observed surface climate agree well with observations, anyway in averaging over areas of vast regions, from watersheds of large rivers to the whole of Russia. These means (ensemble-and area-averaged values) often fall into the range of estimates derived from observations. This suggests the existence of uncertainty in the estimates obtained from simulations as well as from observational data. Comparison of different-generation models demonstrates a gradual improvement of the AOGCM simulation of surface climate characteristics. In general, the averaging over the CMIP3 AOGCM ensemble allows us to state that the ensemble is suitable for estimates of future climate changes.  相似文献   
118.
119.
Formation mechanism of the spring–autumn asymmetry of the F2-layer peak electron number density of the midlatitudinal ionosphere, NmF2, under daytime quiet geomagnetic conditions at low solar activity are studied. We used the ionospheric parameters measured by the ionosonde and incoherent scatter radar at Millstone Hill on March 3, 2007, March 29, 2007, September 12, 2007, and September 18, 1984. The altitudinal profiles of the electron density and temperature were calculated for the studied conditions using a one-dimensional, nonstationary, ionosphere–plasmasphere theoretical model for middle geomagnetic latitudes. The study has shown that there are two main factors contributing to the formation of the observed spring–autumn asymmetry of NmF2: first, the spring–autumn variations of the plasma drift along the geomagnetic field due to the corresponding variations in the components of the neutral wind velocity, and, second, the difference between the composition of the neutral atmosphere under the spring and autumn conditions at the same values of the universal time and the ionospheric F2-layer peak altitude. The seasonal variations of the rate of O+(4S) ion production, which are associated with chemical reactions with the participation of the electronically excited ions of atomic oxygen, does not significantly affect the studied NmF2 asymmetry. The difference in the degree of influence of O+(4S) ion reactions with vibrationally excited N2 and O2 on NmF2 under spring and autumn conditions does not significantly change the spring–autumn asymmetry of NmF2.  相似文献   
120.
Geomagnetism and Aeronomy - The work examines diurnal variations in the statistical characteristics of the variability of the electron number density NmF2 of the maximum of the ionspheric F2 layer...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号