首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   2篇
大气科学   3篇
地球物理   35篇
地质学   13篇
海洋学   4篇
天文学   3篇
自然地理   9篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2016年   1篇
  2015年   4篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   9篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
  1965年   1篇
排序方式: 共有67条查询结果,搜索用时 109 毫秒
21.
22.
The earthquakes of central coastal Peru occur principally in two distinct zones of shallow earthquake activity that are inland of and parallel to the axis of the Peru Trench. The interface-thrust (IT) zone includes the great thrust-fault earthquakes of 17 October 1966 and 3 October 1974. The coastal-plate interior (CPI) zone includes the great earthquake of 31 May 1970, and is located about 50 km inland of and 30 km deeper than the interface thrust zone. The occurrence of a large earthquake in one zone may not relieve elastic strain in the adjoining zone, thus complicating the application of the seismic gap concept to central coastal Peru. However, recognition of two seismic zones may facilitate detection of seismicity precursory to a large earthquake in a given zone; removal of probable CPI-zone earthquakes from plots of seismicity prior to the 1974 main shock dramatically emphasizes the high seismic activity near the rupture zone of that earthquake in the five years preceding the main shock. Other conclusions on the seismicity of coastal Peru that affect the application of the seismic gap concept to this region are: (1) Aftershocks of the great earthquakes of 1966, 1970, and 1974 occurred in spatially separated clusters. Some clusters may represent distinct small source regions triggered by the main shock rather than delimiting the total extent of main-shock rupture. The uncertainty in the interpretation of aftershock clusters results in corresponding uncertainties in estimates of stress drop and estimates of the dimensions of the seismic gap that has been filled by a major earthquake. (2) Aftershocks of the great thrust-fault earthquakes of 1966 and 1974 generally did not extend seaward as far as the Peru Trench. (3) None of the three great earthquakes produced significant teleseismic activity in the following month in the source regions of the other two earthquakes. The earthquake hypocenters that form the basis of this study were relocated using station adjustments computed by the method of joint hypocenter determination.  相似文献   
23.
The microfacies of a Lower Cretaceous carbonate drillcore from Oman are characterized using optimizing matrices of Jaccard's similarity coefficients of community. Other than systems tract boundaries, there is no obvious evidence of individual parasequences in the core. However, diagnostic patterns in microfossil distribution identify environmental gradients recording changes in water depth. These gradients are used to define individual parasequences, parasequence sets, stacking patterns and key surfaces. The patterns suggest that deposition was controlled by successive fourth‐ to fifth‐order (high‐frequency) relative sea‐level cycles superimposed on an underlying third‐order relative sea‐level rise. Although the correlation of these depositional subunits to systematic changes in water depth and the rate of carbonate accumulation alone is not incontrovertible proof of such a sea‐level control, concurrent multiorder relative sea‐level cyclicity provides by far the most likely explanation. A microfacies deposited when the water depth was shallowing is characterized by a relay of microfossils with affinities that shallow upwards. Conversely, a microfacies that records a gradual increase in water depth has a relay of microfossils with affinities that deepen upwards. Microfacies characterized by an assemblage of microfossils with similar affinities record deposition when the benthic environmental conditions remained stable, either because of an equilibrium between shallow water carbonate deposition and rising sea level, or in deeper water where sediment composition was relatively insensitive to changes of water depth. Microfacies characterized by mixed affinity assemblages record syndepositional reworking. During periods of embedded multiorder sea‐level changes, individual parasequences within systems tracts are shown to record more complex environmental gradients than simply the repetition of successive shallowing‐up units as traditionally represented in carbonate sequence stratigraphic models. The microfacies of an individual parasequence may shallow up, or may record both deepening‐up and shallowing‐up depositional phases, as well as periods of sedimentation when benthic environments remained stable. Individual parasequence boundaries may be submarine or subaerial unconformities, or be conformable, as part of a predictable stratigraphic pattern related to the temporal position of an individual parasequence within the underlying third‐order cycle of relative sea‐level change. The hitherto ubiquitous use of assemblages to describe carbonate microfacies, coupled with the widespread use of the metre‐scale shallowing‐up template to identify parasequences, may have led to such complexities previously being overlooked.  相似文献   
24.
Several cold vents are observed at the northern Cascadia margin offshore Vancouver Island in a 10 km2 region around Integrated Ocean Drilling Program Expedition 311 Site U1328. All vents are linked to fault systems that provide pathways for upward migrating fluids and at three vents methane plumes were detected acoustically in the water column. Downhole temperature measurements at Site U1328 revealed a geothermal gradient of 0.056 ± 0.004°C/m. With the measured in situ pore-water salinities the base of methane hydrate stability is predicted at 218–245 meters below seafloor. Heat-probe measurements conducted across Site U1328 and other nearby vents showed an average thermal gradient of 0.054 ± 0.004°C/m. Assuming that the bottom-simulating reflector (BSR) marks the base of the gas hydrate stability zone variations in BSR depths were used to investigate the linkages between the base of the gas hydrate stability zone and fluid migration. Variations in BSR depth can be attributed to lithology-related velocity changes or variations of in situ pore-fluid compositions. Prominent BSR depressions and reduced heat flow are seen below topographic highs, but only a portion of the heat flow reduction can be due to topography-linked cooling. More than half of the reduction may be due to thrust faulting or to pore-water freshening. Distinct changes in BSR depth below seafloor are observed at all cold vents studied and some portion of the observed decrease in the BSR depth was attributed to fault-related upwelling of warmer fluids. The observed decrease in BSR depth below seafloor underneath the vents ranges between 7 and 24 m (equivalent to temperature shifts of 0.07–0.15°C).  相似文献   
25.
Summary. The Hatton Bank passive continental margin exhibits thick seaward dipping reflector sequences which consist of basalts extruded during rifting between Greenland and Rockall Plateau. Multichannel seismic reflection profiling across the margin reveals three reflector wedges with a maximum thickness near 7 km, extending from beneath the upper continental slope to the deep ocean basin. We present results of the velocity structure within the dipping reflector sequences at eight locations across the margin, interpreted by synthetic seismogram modelling a set of multichannel expanding spread profiles parallel to the margin. At the top of some reflector sequences, we observe a series of 100 m thick high- and low-velocity zones, which are interpreted as basalt flows alternating with sediments or weathered and rubble layers. At the profile locations, the base of the dipping reflectors correlates with P -wave velocities near 6.5 km s−1. However, elsewhere the reflectors appear to extend significantly deeper than the inferred 6.5 km s−1 velocity contour, indicating that the velocity structure may not be controlled solely by lithological boundaries but also by metamorphic effects. Shear-waves were observed on two lines, permitting the calculation of Poisson's ratio. The decrease in Poisson's ratio from 0.28 to near 0.25 in the upper 5 km of crust may also indicate the effect of metamorphism on seismic properties, or alternatively may be explained by crack closure under load.  相似文献   
26.
The relative ages of Neogfacial deposits above 2900m near Cloudveil Dome, Middle Teton, and Teepe glaciers, central Teton Range, western Wyoming, were determined using topographic position, weathering features, lichenometry, vegetation characteristics, and soils. A three-fold deposit sequence is identified and correlated with the Gannett Peak, Audubon and Indian Basin Neoglacial advances described elsewhere in the Teton and nearby Wind River ranges. While soil profile morphology proved very useful in distinguishing deposits of different age, other age indicators such as clay mineralogy and soil chemistry, proved of only marginal value in age discrimination. This chronosequence, emplaced over the last ~5000yr, provides an excellent setting upon which to test changes in plant species composition and its use as a relative dating method. Vascular plant species composition cannot be used to discriminate deposits of the different advances, possibly because of random colonisation and establishment combined with extensive mass wasting during the Neoglacial. However, certain vegetation features, such as total cover and species densities, appear useful as relative dating methods.  相似文献   
27.
Baker Creek drains water from subarctic Canadian Shield terrain comprised of a mix of exposed Precambrian bedrock, lakes, open black spruce forest and peat filled depressions. Research in the catchment has focused on hydrological processes at the hillslope and catchment scales. Streamflow is gauged from several diverse sub-catchments ranging in size from 9 to 155 km2. The period of record (2003–2019) of streamflow from these sub-catchments extends from 12 to 17 years, and these data are the focus of this note. Such data are unique in this remote region. 2003–2019 was a period that included both historic wet and dry conditions. Observations during such a diversity of conditions are helping to improve understanding of how stream networks that drain this landscape expand and contract in response to short and long hydroclimatic cycles. These data from a distinctly cold and dry region of low relief, thin soils, exposed bedrock and permafrost are a valuable contribution to the global diversity of research catchment data.  相似文献   
28.
ABSTRACT

Climate change/variability accompanied by anthropogenic activities can alter the runoff response of landscapes. In this study we investigate the integrated impacts of precipitation change/variability and landscape changes, specifically wetland drainage practices, on streamflow regimes in wetland-dominated landscapes in the Assiniboine and Saskatchewan River basins of the North American Prairies. Precipitation and streamflow metrics were examined for gradual (trend type) and abrupt (shift type) changes using the modified Mann-Kendall trend test and a Bayesian change point detection methodology. Results of statistical analyses indicate that precipitation metrics did not experience statistically significant increasing or decreasing changes and there was no statistical evidence of streamflow regime change over the study area except for one of the smaller watersheds. The absence of widespread streamflow and precipitation changes suggests that wetland drainage did not lead to detectable changes in streamflow metrics over most of the Canadian portion of the Prairies between 1967 and 2007.
Editor Z.W. Kundzewicz Associate editor None assigned  相似文献   
29.
The M7.9 Wenchuan earthquake on May 12th, 2008 was the most destructive in China since 1976. The event caused huge damage and loss of life and exposed weaknesses both in the formulation and implementation of the regulations governing building in the affected provinces. Following the earthquake a massive relief and recovery operation was mounted by the Chinese government. The authors took part in field studies in the affected area which took place 5 and 11?months after the event, at which time recovery operations were well-advanced. The aims of the study were to assess the effects caused by the earthquake to the built environment and society, to collect information on the ongoing recovery efforts and future plans, and to demonstrate the use of tools that allow the collection of spatially referenced damage and recovery data. Based on available satellite imagery supplemented by ground observation, geodatabases were constructed containing information on damage and recovery in several parts of the affected area. The paper gives an overview of the recovery process, describes the methods used to construct these geodatabases, and offers some analysis of the data obtained. It is argued that such databases have great potential for the management of post-disaster recovery and for creating a permanent record of the recovery process.  相似文献   
30.
Along the deformation front of the North Ecuador–South Colombia (NESC) margin, both surface heat flow and trench sediment thickness show prominent along-strike variations, indicating significant spatial variations in sedimentation rate. Investigating these variations helps us address the important question of how trench sedimentation influences the temperature distribution along the interplate contact and the extent of the megathrust seismogenic zone. We examine this issue by analysing 1/ a new dense reflection data set, 2/ pre-stack depth migration of selected multichannel seismic reflection lines, 3/ numerous newly-identified bottom-simulating reflectors and 4/ the first heat probe measurements in the region. We develop thermal models that include sediment deposition and compaction on the cooling oceanic plate as well as viscous corner flow in the mantle wedge. We estimate that the temperature from 60–150 °C to 350–450 °C, commonly associated with the updip and downdip limits of the seismogenic zone, extends along the plate interface over a downdip distance of 160 to 190 ± 20 km. We conclude that the updip limit of the seismogenic zone for the great megathrust earthquake of 1979 is associated with low-temperature (60–70 °C) processes. Our models also suggest that 60–70% of the two-fold decrease in measured heat flow from 3°N to 2.8°N is related to an abrupt southward increase in sedimentation rate in the trench. Such a change may potentially induce a landward shift of the 60–150 °C isotherms, and thus the updip limit of the seismogenic zone, by 10 to 20 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号