首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   5篇
  国内免费   3篇
测绘学   2篇
大气科学   36篇
地球物理   69篇
地质学   52篇
海洋学   21篇
天文学   13篇
综合类   2篇
自然地理   10篇
  2022年   1篇
  2020年   4篇
  2019年   3篇
  2018年   9篇
  2017年   4篇
  2016年   6篇
  2015年   16篇
  2014年   11篇
  2013年   13篇
  2012年   16篇
  2011年   17篇
  2010年   12篇
  2009年   14篇
  2008年   15篇
  2007年   17篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
排序方式: 共有205条查询结果,搜索用时 46 毫秒
31.
Core SA03-1 from the southern Adriatic Sea (EC-Eurostrataform project) provides new information about climate changes and palaeocirculation in the Adriatic region during the last deglaciation. The results of an integrated study based on pollen and foraminifera records of the part of the core spanning the late Pleistocene–early Holocene transition (including the late Younger Dryas, the Preboreal and the beginning of the Boreal) are presented. The major vegetation changes and the short-term oscillations occurred during the early Holocene warming in the southern Adriatic basin on the basis of a high-resolution pollen record are documented. Vegetation changes are correlated to short-term oscillations detected in the foraminifera record during the same interval. The two independent terrestrial and marine proxies indicate at least three short-term cold and dry oscillations occurring at 11.2–11, 10.8–10.4 and 10 cal ka BP, according to the age–depth model adopted in this study. Finally, adopting an event-stratigraphy approach, the comparison of these results with two western Mediterranean records of Preboreal short-term oscillations suggest the occurrence of synchronous bio-events in the Mediterranean basin.  相似文献   
32.
Wave–current laboratory experiments have shown that the logarithmic current profile observed in pure current flows is modified due to the presence of waves. When waves propagate opposite the current, an increase in the current intensity is achieved near the mean water level, while a reduction is obtained for following waves and currents. With the aim of analyzing these nonlinear effects along the whole water column, an Eulerian wave–current model is presented. In contrast to previously presented wave–current models, the present is able to include the variation of the free surface elevation due to the wave motion and the effect of a non hydrostatic pressure field. Therefore it does not restrict its application to waves in shallow waters. Moreover, the model is able to simulate all the possible angles between waves and currents.  相似文献   
33.
Global changes in extreme events: regional and seasonal dimension   总被引:3,自引:0,他引:3  
This study systematically analyzes the complete IPCC AR4 (CMIP3) ensemble of GCM simulations with respect to changes in extreme event characteristics at the end of the 21st century compared to present-day conditions. It complements previous studies by investigating a more comprehensive database and considering seasonal changes beside the annual time scale. Confirming previous studies, the agreement between the GCMs is generally high for temperature-related extremes, indicating increases of warm day occurrences and heatwave lengths, and decreases of cold extremes. However, we identify issues with the choice of indices used to quantify heatwave lengths, which do overall not affect the sign of the changes, but strongly impact the magnitude and patterns of projected changes in heatwave characteristics. Projected changes in precipitation and dryness extremes are more ambiguous than those in temperature extremes, despite some robust features, such as increasing dryness over the Mediterranean and increasing heavy precipitation over the Northern high latitudes. We also find that the assessment of projected changes in dryness depends on the index choice, and that models show less agreement regarding changes in soil moisture than in the commonly used ‘consecutive dry days’ index, which is based on precipitation data only. Finally an analysis of the scaling of changes of extreme temperature quantiles with global, regional and seasonal warming shows that much of the extreme quantile changes are due to a seasonal scaling of the regional annual-mean warming. This emphasizes the importance of the seasonal time scale also for extremes. Changes in extreme quantiles of temperature on land scale with changes in global annual mean temperature by a factor of more than 2 in some regions and seasons, implying large changes in extremes in several countries, even for the commonly discussed global 2°C-warming target.  相似文献   
34.
Within the Variscan Orogen, Early Devonian and Late Devonian high‐P belts separated by mid‐Devonian ophiolites can be interpreted as having formed in a single subduction zone. Early Devonian convergence nucleated a Laurussia‐dipping subduction zone from an inherited lithospheric neck (peri‐Gondwanan Cambrian back‐arc). Slab‐retreat induced upper plate extension, mantle incursion and lower plate thermal softening, favouring slab‐detachment within the lower plate and diapiric exhumation of deep‐seated rocks through the overlying mantle up to relaminate the upper plate. Upper plate extension produced mid‐Devonian suprasubduction ocean floor spreading (Devonian ophiolites), while further convergence resulted in plate coupling and intraoceanic ophiolite imbrication. Accretion of the remaining Cambrian ocean heralded Late Devonian subduction of inner sections of Gondwana across the same subduction zone and the underthrusting of mainland Gondwana (culmination of NW Iberian allochthonous pile). Oblique convergence favoured lateral plate sliding, and explained the different lateral positions along Gondwana of terranes separated by Palaeozoic ophiolites.  相似文献   
35.
36.
A study has been undertaken to determine sulfur in geological samples by coupled analytical techniques. Two measurement methods have been developed: one using an electric furnace coupled to an ion chromatograph (electric furnace-IC) and another using infrared (IR) and quadrupole mass spectrometry (QMS) for evolved gas analysis (EGA) coupled with a thermogravimetric analyser (TGA). In the electric furnace-IC method, measurement was performed without any sample pre-treatment. The measurement conditions were optimised by varying sample quantity, type of catalyst (WO3, Cu, W and V2O5) and sample/catalyst ratio, and the detection limit was 10 μg g−1. Sulfur ores decompose at different temperatures. However, TGA-EGA allowed identification of the different forms of sulfur in the sample, even when they were found in very low concentrations, because the sulfur was continuously analysed. The developed chromatographic method allowed simultaneous analysis of several sample components, such as S, Cl and F, with a low detection limit. The method was much faster and more specific than the methods described in the literature. The results of the sulfur determination had low scatter, possibly because the samples underwent little handling during analysis: the operator only weighed and placed the sample in the furnace, the rest of the measurement process was fully automated. The results obtained by both the developed methods have been validated by using reference materials and comparison with combustion-IR spectroscopy, a standard method for determining total sulfur in a sample.  相似文献   
37.
This work assesses the influence of the model physics in present-day regional climate simulations. It is based on a multi-phyiscs ensemble of 30-year long MM5 hindcasted simulations performed over a complex and climatically heterogeneous domain as the Iberian Peninsula. The ensemble consists of eight members that results from combining different parametrization schemes for modeling the Planetary Boundary Layer, the cumulus and the microphysics processes. The analysis is made at the seasonal time scale and focuses on mean values and interannual variability of temperature and precipitation. The objectives are (1) to evaluate and characterize differences among the simulations attributable to changes in the physical options of the regional model, and (2) to identify the most suitable parametrization schemes and understand the underlying mechanisms causing that some schemes perform better than others. The results confirm the paramount importance of the model physics, showing that the spread among the various simulations is of comparable magnitude to the spread obtained in similar multi-model ensembles. This suggests that most of the spread obtained in multi-model ensembles could be attributable to the different physical configurations employed in the various models. Second, we obtain that no single ensemble member outperforms the others in every situation. Nevertheless, some particular schemes display a better performance. On the one hand, the non-local MRF PBL scheme reduces the cold bias of the simulations throughout the year compared to the local Eta model. The reason is that the former simulates deeper mixing layers. On the other hand, the Grell parametrization scheme for cumulus produces smaller amount of precipitation in the summer season compared to the more complex Kain-Fritsch scheme by reducing the overestimation in the simulated frequency of the convective precipitation events. Consequently, the interannual variability of precipitation (temperature) diminishes (increases), which implies a better agreement with the observations in both cases. Although these features improve in general the accuracy of the simulations, controversial nuances are also highlighted.  相似文献   
38.
Zooplankton sampling has been carried out by the Continuous Plankton Recorder (CPR) survey since the 1930s enabling the study of long-term changes in plankton populations, the elucidation of seasonal patterns of abundance, and more recently providing zooplankton biomass estimates for ecosystem models. Data for zooplankton abundance collected by CPR tows in the Western English Channel (between 1988 and 1998) were compared to vertically integrated samples collected from station L4 off Plymouth, UK. Comparisons were made for locally abundant copepods (including Acartia, Calanus, Para/Pseudocalanus, Centropages, Oithona and Temora) collected by CPR and WP-2 nets. All dominant species recorded at L4 were also common to the CPR data. However, the position of the taxa in the two datasets was not equivalent. Seasonal cycles revealed by CPR data were significantly similar to those recorded throughout the water column at L4 for most taxa. However, absolute levels of abundance differed for the two datasets: abundances were underestimated by CPR samples when compared to those of vertically integrated samples by a factor of between 2 and 35, with the exception of Centropages. The differing mesh sizes (200 and 270 μm) of the WP-2 net and CPR mesh could only partially explain these differences in abundance, implying that the behaviour of individual taxa and their depth in the water column also influenced the abundance recorded.  相似文献   
39.
The present paper describes observations, analyses and models of salt-marsh channel network and vegetation patterns with the aim of contributing to the development of predictive models of ecological and morphological co-evolution. Existing and new observations are described, with particular emphasis on remote sensing and ancillary field surveys, which are shown to allow reliable, accurate and repeatable quantitative characterizations of landform and vegetation properties over the spatial scales of interest. The observed channel network morphological characters are then used as the basis and validation of models describing the emergence of channel network and vegetation spatial patterns. In particular, with reference to observations performed in the Venice Lagoon, the note describes: (i) new, 2-cm resolution, characterizations of channel network geometry obtained from “proximal sensing” photographic observations; (ii) the reliable quantitative maps of salt-marsh vegetation which may be retrieved from hyperspectral remote sensing data and field ancillary observations; (iii) a synthesis of recent and new analyses of the statistical properties of vegetation and landform spatial organization, that may be inferred from the maps so derived; (iv) recent and new conceptual and quantitative ecological and geomorphic models developed and validated by remote-sensing and field observations. A coherent observational and theoretical eco-morphodynamic framework is then proposed.  相似文献   
40.
The Proterozoic basement of the Province of Zambezia (Mozambique) is located near the southern end of the so called Mozambique Belt. Rb-Sr data derived from the analyses of 66 whole rocks and a few mineral samples bear witness of a magmatic and metamorphic episode referable to the Kibaran (ca. 1000 Ma) and helped to model the late-Proterozoic evolution as follows. At 1100–1050 Ma a pre-orogenic, calc-alkaline magmatism was responsible for the emplacement of now deformed granite and granodiorite. This phase was accompanied by rhyolitic volcanism. A subsequent peak of deformation and metamorphism occurred at 1000-950 Ma and was associated with a second generation of substantially post-tectonic granites. A thermal event resulting in the emplacement of a final generation of granites and pegmatites can be dated to around 500-450 Ma.The metamorphic basement has not preserved its protolith age, probably as a result of extensive isotopic homogeneization of Sr in Kibaran times. Its maximum time of differentiation from the mantle should be around 1600 Ma.The very low values of initial Sr isotopic ratios suggest the absence of Archean crustal precursors and support the rather young, yet pre-Pan-African evolution of the southernmost Mozambique Belt.
Zusammenfassung Das proterozoische Grundgebirge der Provinz Zambesi (Mosambique) befindet sich in der Nähe des südlichen Endes des sogenannten Mozambique Belt. Rb/Sr Daten aus 66 Ganzgesteins- und einigen Mineralanalysen zeugen von einer magmatischen und metamorphen Episode die sich dem Kibaran (ca. 1000 Ma) zuordnen läßt, und wie sich im folgenden zeigt, hilfreich bei der Modellisierung der spätproterozoischen Entwicklung ist. Um 1100 bis 1050 Ma erfolgte ein präorogener kalkalkalischer Magmatismus, bestehend aus Graniten und Granodioriten, die heute deformiert vorliegen. Diese Phase wurde von rhyolithischem Vulkanismus begleitet. Von 1000 bis 950 Ma folgte der Höhepunkt der Deformation und Metamorphose, begleitet von einer bedeutenden 2. Generation posttektonischer Granite. Bedingt durch ein weiteres thermales Ereignis intrudierte die letzte Granit- und Pegmatitgeneration vor 500 bis 450 Ma.Im metamorphen Grundgebirge ist das Eduktalter vermutlich aufgrund der starken isotopischen Homogenisierung von Sr während der Kibara-Zeit nicht erhalten. Seine maximale Differentiationszeit vom Mantel muß vor 1600 Ma gewesen sein.Die sehr niedrigen Gehalte der initialen Sr-Isotopenverhältnisse lassen die Abwesenheit von archaischen Krustenvorläufern vermuten, und unterstützen die sehr junge, bis jetzt Prä-Pan-Afrikanische Entwicklung des südlichsten Mozambique Belts.

Résumé Le socle protérozoïque de la province du Zambèze, au Mozambique, se trouve à proximité de l'extrémité sud du «Mozambique Belt». Des mesures Rb/Sr effectuées sur 66 roches totales et sur quelques minéraux témoignent d'un épisode magmatique et métamorphique attribuable au Kibarien (environ 1.000 Ma), ce qui permet de se représenter comme suit l'histoire de cette région au Protérozoïque supérieur. Il y a 1.100 à 1.050 Ma, la région a connu une phase de magmatisme calco-alcalin qui s'est traduite par la mise en place de granites et granodiorites, aujord'hui déformés. Cette phase s'est accompagnée d'un volcanisme rhyolitique. Elle a été suivie, entre 1.000 et 950 Ma, d'une activité tectono-métamorphique majeure, à laquelle est associée une deuxième et importante génération de granites, post-tectoniques. Ultérieurement, la région a connu encore un épisode thermique, daté à 500-450 Ma, responsable de la mise en place d'une dernière génération de granite et de pegmatite.Le socle métamorphique n'a pas gardé de témoins de l'âge de son protolithe, en raison probablement de la forte homogénisation isotopique du Sr à l'époque kibarienne. Lâge maximal de sa différenciation à partir du manteau doit se situer autour de 1.600 Ma.La valeur très basse des rapports isotopiques initiaux du Sr suggère l'absence de précurseurs crustaux archéens et incite à admettre une évolution relativement jeune — bien que pré-panafricaine — du «Mozambique Belt» méridional.

() .. . , Rb/Sr 66 , , Kibara, 1000 , , , . 1100 1050 - - , , . . 1000 950 , - . , 500 450 . , , , Kibara. , , 1600 my . - .
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号