首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   1篇
  国内免费   5篇
测绘学   8篇
大气科学   23篇
地球物理   41篇
地质学   89篇
海洋学   8篇
天文学   20篇
自然地理   3篇
  2024年   1篇
  2022年   6篇
  2021年   9篇
  2020年   4篇
  2019年   2篇
  2018年   16篇
  2017年   13篇
  2016年   9篇
  2015年   9篇
  2014年   11篇
  2013年   10篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   12篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1972年   2篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
31.
The temporal variation of ambient SO2 and the chemical composition of particulate matters (PM2.5 and PM10) were studied at National Physical Laboratory (NPL), New Delhi (28°38′N, 77°10′E). Spatial variation of SO2 at seven air quality monitoring stations over Delhi was also studied simultaneously. Wide range of ambient SO2 was recorded during winter (2.55 to 17.43 ppb) compare to other seasons. SO2 mixing ratio was recorded significantly high at industrial sites during winter and summer; however, no significant spatial difference in SO2 mixing ratio was recorded during monsoon. SO 4 2? /(SO2+SO 4 2? ) ratio was recorded high (0.74) during winter and low (0.69) during summer. Monthly variation of PSCF was analyzed using HYSPLIT seven days backward trajectories and daily average SO2 data. PSCF analysis suggests that, during winter (December, January, February) ambient SO2 at the study site might have contributed from long distance sources, located towards west and southwest directions; during monsoon (July, August, September) marine contribution was noticed; whereas, during summer (April, May and June) it was from regional sources (located within few 100 km of study site). During winter there was significant contribution from the long distance sources located in western Asia, northwestern Pakistan, Rajasthan and Punjab provinces of India. Coal used in thermal power plants at Panipat (in the northwestern side) and Faridabad (in the southeastern side), local industries, soil erosion and biomass burning may be major contributing factors for SO2 during summer. The study establishes that the transport sector may not be the major source of ambient SO2 in Delhi.  相似文献   
32.
Dispersion of Rayleigh type surface wave propagation has been discussed in four-layered oceanic crust. It includes a sandy layer over a crystalline elastic half-space and over it there are two more layers—on the top inhomogeneous liquid layer and under it a liquid-saturated porous layer. Frequency equation is obtained in the form of determinant. The effects of the width of different layers as well as the inhomogeneity of liquid layer, sandiness of sandy layer on surface waves are depicted and shown graphically by considering all possible case of the particular model. Some special cases have been deduced, few special cases give the dispersion equation of Scholte wave and Stoneley wave, some of which have already been discussed elsewhere.  相似文献   
33.
For a class of boundary value problems associated with flexural gravity waves, characteristics of the eigen-system are analysed which are used to study the convergence of the expansion formulae in both cases of single and two layer fluids in water of finite and infinite depths. Using Green’s function technique, the spectral representations of the vertical eigenfunctions are obtained which are used along with the orthogonal mode-coupling relations to prove the convergence of the expansion formulae. Using the expansion formulae flexural gravity wave scattering due to multiple articulations in the presence of compression are investigated. The problem is studied in both the cases of single-layer and two-layer fluids in finite water depth. Effects of compressive force, stiffness of the connectors, length of the elastic plates and water depth, position of interface on wave scattering by articulated plates are studied by analysing the reflection and transmission coefficients. This procedure of proving the convergence of expansion formulae is independent of water depth. The concept and methodology for dealing with wave-structure interaction problems discussed here can be generalised to deal with problems of similar nature arising in the broad area of mathematical physics and engineering.  相似文献   
34.
The stationary, spherically symmetric, polytropic and inviscid accretion flow in the Schwarzschild metric has been set-up as an autonomous first-order dynamical system, and it has been studied completely analytically. Of the three possible critical points in the flow, the one that is physically realistic behaves like the saddle point of the standard Bondi accretion problem. One of the two remaining critical points exhibits the strange mathematical behaviour of being either a saddle point or a centre-type point, depending on the values of the flow parameters. The third critical point is always unphysical and behaves like a centre-type point. The treatment has been extended to pseudo-Schwarzschild flows for comparison with the general relativistic analysis.  相似文献   
35.
Predictive relations are developed for peak ground acceleration (PGA) from the engineering seismoscope (SRR) records of the 2001 Mw 7.7 Bhuj earthquake and 239 strong-motion records of 32 significant aftershocks of 3.1 ≤ Mw ≤ 5.6 at epicentral distances of 1 ≤ R ≤ 288 km. We have taken advantage of the recent increase in strong-motion data at close distances to derive new attenuation relation for peak horizontal acceleration in the Kachchh seismic zone, Gujarat. This new analysis uses the Joyner-Boore’s method for a magnitude-independent shape, based on geometrical spreading and anelastic attenuation, for the attenuation curve. The resulting attenuation equation is,
where, Y is peak horizontal acceleration in g, Mw is moment magnitude, rjb is the closest distance to the surface projection of the fault rupture in kilometers, and S is a variable taking the values of 0 and 1 according to the local site geology. S is 0 for a rock site, and, S is 1 for a soil site. The relation differs from previous work in the improved reliability of input parameters and large numbers of strong-motion PGA data recorded at short distances (0–50 km) from the source. The relation is in demonstrable agreement with the recorded strong-ground motion data from earthquakes of Mw 3.5, 4.1, 4.5, 5.6, and 7.7. There are insufficient data from the Kachchh region to adequately judge the relation for the magnitude range 5.7 ≤ Mw ≤ 7.7. But, our ground-motion prediction model shows a reasonable correlation with the PGA data of the 29 March, 1999 Chamoli main shock (Mw 6.5), validating our ground-motion attenuation model for an Mw6.5 event. However, our ground-motion prediction shows no correlation with the PGA data of the 10 December, 1967 Koyna main shock (Mw 6.3). Our ground-motion predictions show more scatter in estimated residual for the distance range (0–30 km), which could be due to the amplification/noise at near stations situated in the Kachchh sedimentary basin. We also noticed smaller residuals for the distance range (30–300 km), which could be due to less amplification/noise at sites distant from the Kachchh basin. However, the observed less residuals for the longer distance range (100–300 km) are less reliable due to the lack of available PGA values in the same distance range.  相似文献   
36.
In this paper an attempt is made to identify the mesoscale features in surface pressure pattern, if any, associated with thunderstorm over the Gangetic West Bengal region in India. The study was conducted over Kharagpur and the adjoining area in the Gangetic West Bengal, frequently affected by thunderstorms during the pre-monsoon seasons of April–May. Observations recorded at 50 m instrumented micro-meteorological tower and upper air sounding at Kharagpur under nationally coordinated Severe Thunderstorm Observations and Regional Modeling (STORM) Programme are used to study the variation in surface pressure, wind speed and direction, temperature and relative humidity associated with the squall lines with trailing stratiform precipitation region. In the surface pressure variation, pre-squall mesolow, mesohigh and wake low are identified with the passage of the squall line at Kharagpur. It is observed that in the squall line with trailing stratiform precipitation shield, the mesohigh is associated with convective line and wake low exists at the rear of the storms. The position of the mesohigh is typically found in the vicinity of the heavy rain directly beneath the downdraft. The mesohigh seems to be initiated by the cooling due to evaporation of precipitation in the downdraft and intensified due to the non-hydrostatic effect because of the rainfall directly beneath the downdraft. It is also observed that the passage of trailing edges of the stratiform precipitation coincided with the wake low. Upper air sounding shows mid-tropospheric cooling and lower tropospheric warming. It may be possible due to the dominance of evaporative cooling in the mid-levels and dynamically forced descending motion leading to adiabatic warming in the low levels which may lead to the formation of the wake low.  相似文献   
37.
We herein present source parameters and focal mechanism of a rare cratonic upper crustal earthquake of Mw4.0, which occurred at 8 km depth (centroid depth) below a region near Deogarh, Jharkhand. For our study, we used broadband waveform data from a seismic network of 15 three-component seismographs in the eastern Indian craton. The average seismic moment, moment magnitude and source radius are estimated to be 1.1 × 1015 N-m, 4.0 and 180.6 m, respectively. The high average stress drop of 14.27 MPa could be attributed to its lower-crustal origin. The mean corner frequency is calculated to be 4.1 Hz. To study the source mechanism, we perform a deviatoric constrained full waveform moment tensor inversion of multiple point sources on the band-passed (0.06 – 0.14 Hz) broadband displacement data of the Deogarh event, using ISOLA software. The best fit is obtained for the source at 8 km centroid depth, with a moment magnitude 3.7, and a right-lateral strike-slip mechanism with strike 162°, dip 72° and rake 169°. The P-axis orients N24°E, which is parallel to the direction of the absolute plate motion direction of Indian plate, while T-axis orients E-W, which is parallel to the strike of the pre-existing Damodar Graben (DG) of Gondwana age. The occurrence of this earthquake is attributed to the neotectonic reactivation of a fault associated with the E-W trending DG shear zone.  相似文献   
38.
Salt affected soils occupy significant areas in western and central India manifested by the arid and semiarid climate, sandy/clayey soil texture, absence of natural drainage, and inadequate infrastructure and irrigation development. These soils are productive following reclamation and appropriate management. The National Remote Sensing Agency, Hyderabad (India) published state-wise maps of salt affected soils in India on 1:250,000 scale using a legend that includes physiography, soil characteristics, and the aerial extent of the mapping units. In the analogue form, voluminous data contained in such maps were difficult to handle by users of varied backgrounds. An attempt was made to prepare a computerized database of salt affected soils for easy access, retrieval, and manipulation of spatial and attribute data useful for management of salt affected soils. The salt affected soils maps were prepared, for Rajasthan, Gujarat, Madhya Pradesh, and Maharashtra states, overlaying digitized layers of SAS polygons and the Survey of India basemap using the ILWIS (Integrated Land and Water Information System) software. GIS was used to prepare a composite (master) database of western and central India that showed the extent and distribution of salt affected soils. A relational database was prepared combining the digitized polygons with soil characteristics such as nature and degree of salinity (presence of higher concentration of neutral salts and neutral soil reaction), sodicity (presence of higher concentration of basic salts and alkaline reaction) and ground coverage. The regional and zonal databases of salt affected soils were prepared at a suitable scale overlaying agro-climatic regions agro-climatic zones. Spatial relation of salt affected soils with physiography, climate, geology, and agro-eco-sub-regions were evaluated employing map calculations in GIS. Saline soils were prevalent in Gujarat, and Rajasthan while sodic soils were dominant in Maharashtra and Madhya Pradesh. These were distributed primarily in the arid (B) plain of Rajasthan, alluvial (A) and coastal (D) plains of Gujarat, and peninsular plain (F) of Maharashtra and Madhya Pradesh. It occupied 2,596,942 ha (78%) in the western (Rajasthan and Gujarat) and 733,608 ha (22%) in the central (Madhya Pradesh and Maharashtra) regions. The SAS occupied 3.3 million ha in the western and central region constituting 50% of the total salt affected soils in India. The saline and sodic soils occupied 2,069,285 ha (62%) and 1,261,266 ha (38%), respectively.  相似文献   
39.
Lekshmi  S  Chattopadhyay  Rajib  Kaur  Manpreet  Joseph  Susmitha  Phani  R.  Dey  A.  Mandal  R.  Sahai  A. K. 《Theoretical and Applied Climatology》2022,147(1-2):205-215
Theoretical and Applied Climatology - In the seamless forecast paradigm, it is hypothesized that the reduction in initial error in the dynamical model forecast would help to reduce forecast error...  相似文献   
40.
The present experimental investigations study the effect of layering over rigid base on the dynamic behavior of foundation under vertical mode of vibration. Model block vibration tests were conducted on a rigid surface footing resting on different layered soil systems underlain by rigid base. The rigid base was used to simulate the presence of bedrock. The tests were carried out in a pit of size 2.0?m?×?2.0?m?×?1.9?m (deep) using a concrete footing of size 0.4?m?×?0.4?m?×?0.1?m. A rotating mass type mechanical oscillator was used for inducing vibration in vertical direction. Different layered soil systems were prepared within the total depth of 1,200?mm over the rigid base. Locally available gravel and fly ash were used to form different layered soil systems. In total, 132 nos. model block vibration tests in vertical mode were conducted for different layering and loading combinations. The experimentally obtained results are also compared with the results obtained from the analysis by mass-spring-dashpot and equivalent half-space theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号