首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   11篇
地质学   7篇
自然地理   5篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
The purpose of this research is to demonstrate the possibility of applying one geophysical method to studying untraditional systems as is the case with Portland-cement-based materials. The research demonstrates how conventional paleomagnetic methodology can be employed in studying the mode of magnetic recording in present-day industrial materials. Portland-cement admixtures such as fly ashes and furnace slags should be discriminated, because those particles interact in soils and sediments in nature. Moreover, a better undertanding of magnetic remanent acquisition in model materials can serve to improve the interpretation of magnetic remanent acquisition in natural rocks formed a long time ago. The magnetic constituents of Portland-cement paste and mortar acquire a magnetic remanence due to their alignment with the earth's magnetic field at the casting place. This magnetization can be measured using ordinary paleomagnetic techniques. The alignment of the individual magnetic particles accounts for the intensity of the magnetic remanence, which can be increased by adding water and by vibration before setting and hardening. Blast furnace slag admixtures also add to the enhancement of the intensity of remanence. The magnetization of Portland-cement-based materials shows a near linear relationship with the water /cement (w/c) ratios employed in the experimental work; the w/c ratios range between 0.2 – 0.6 in pastes and 0.3 – 0.6 in mortar. Stable remanent magnetization was obtained during the first seven days of setting and hardening, a period necessary for magnetic particles to become locked parallel to the earth's magnetic field. The stability of magnetic remanence predicts the usefulness of the methodology in studying the properties of Portland cement and particularly in the control of iron-bearing admixtures.  相似文献   
22.
23.
Several statistical analyses—as alternative tools—were applied to magnetic monitoring studies. Magnetic and chemical data from two environments have been gathered from previous papers and studied separately. Univariate and multivariate analyses were first examined, revealing a link between magnetic and chemical variables. The latter analyses, in particular, canonical correlation analysis, showed very good canonical correlations: R = 0.950 (Antarctica) and R = 0.891 (Argentina). On the other hand, in order to classify the data according to the degree of contamination, principal coordinates and discriminant analyses, as well as the comparison of several multivariate means were performed. Three groups were distinguished in both case studies, which were well classified at a low margin of error and quite different from each other at a significant level: 0.01 (Antarctica) and 0.05 (Argentina). The joint use of these statistical analyses also showed, in agreement with previous studies, that the relevant variables in order to identify atmospheric pollution are: magnetic susceptibility, saturation of isothermal remanent magnetisation, anhysteric susceptibility/magnetic susceptibility, remanent coercivity, and copper, lead, zinc and chromium contents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号