首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  国内免费   7篇
测绘学   2篇
大气科学   14篇
地球物理   34篇
地质学   11篇
海洋学   5篇
天文学   2篇
自然地理   2篇
  2024年   1篇
  2021年   6篇
  2020年   4篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2003年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有70条查询结果,搜索用时 31 毫秒
41.
The Earthquake Model of Middle East (EMME) Project aimed to develop regional scale seismic hazard and risk models uniformly throughout a region extending from the Eastern Mediterranean in the west to the Himalayas in the east and from the Gulf of Oman in the south to the Greater Caucasus in the North; a region which has been continuously devastated by large earthquakes throughout the history. The 2014 Seismic Hazard Model of Middle East (EMME-SHM14) was developed with the contribution of several institutions from ten countries. The present paper summarizes the efforts towards building a homogeneous seismic hazard model of the region and highlights some of the main results of this model. An important aim of the project was to transparently communicate the data and methods used and to obtain reproducible results. By doing so, the use of the model and results will be accessible by a wide community, further support the mitigation of seismic risks in the region and facilitate future improvements to the seismic hazard model. To this end all data, results and methods used are made available through the web-portal of the European Facilities for Earthquake Hazard and Risk (www.efehr.org).  相似文献   
42.
We summarize the main elements of a ground-motion model, as built in three-year effort within the Earthquake Model of the Middle East (EMME) project. Together with the earthquake source, the ground-motion models are used for a probabilistic seismic hazard assessment (PSHA) of a region covering eleven countries: Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Jordan, Lebanon, Pakistan, Syria and Turkey. Given the wide variety of ground-motion predictive models, selecting the appropriate ones for modeling the intrinsic epistemic uncertainty can be challenging. In this respect, we provide a strategy for ground-motion model selection based on data-driven testing and sensitivity analysis. Our testing procedure highlights the models of good performance in terms of both data-driven and non-data-driven testing criteria. The former aims at measuring the match between the ground-motion data and the prediction of each model, whereas the latter aims at identification of discrepancies between the models. The selected set of ground models were directly used in the sensitivity analyses that eventually led to decisions on the final logic tree structure. The strategy described in great details hereafter was successfully applied to shallow active crustal regions, and the final logic tree consists of four models (Akkar and Ça?nan in Bull Seismol Soc Am 100:2978–2995, 2010; Akkar et al. in Bull Earthquake Eng 12(1):359–387, 2014; Chiou and Youngs in Earthq Spectra 24:173–215, 2008; Zhao et al. in Bull Seismol Soc Am 96:898–913, 2006). For other tectonic provinces in the considered region (i.e., subduction), we adopted the predictive models selected within the 2013 Euro-Mediterranean Seismic Hazard Model (Woessner et al. in Bull Earthq Eng 13(12):3553–3596, 2015). Finally, we believe that the framework of selecting and building a regional ground-motion model represents a step forward in ground-motion modeling, particularly for large-scale PSHA models.  相似文献   
43.
Consideration of vertical seismic design loads is important for long-span structural systems, short-period structures, and for some nonstructural components in the buildings. To this end, seismic design codes utilize alternative approaches to define vertical design spectrum at different levels of complexity: either as a fraction of horizontal design spectrum or using a separate functional form having features different than the horizontal spectrum. In all cases, a consistency between the horizontal and vertical design spectral ordinates is sought. In this paper, we consider a set of modern seismic design codes, horizontal and vertical ground-motion datasets, as well as ground-motion predictive models (GMPMs) to assess the accuracy of code-based vertical design spectrum expressions. We compute horizontal and vertical spectra for different earthquake scenarios (magnitude-distance-soil condition combinations) from the selected horizontal and vertical GMPMs for comparisons with their code-based (idealized) counterparts. Besides that, we study the vertical spectrum behavior from observed ground-motion data. Our observations suggest that the vertical design spectrum formulations by current codes do not fully explain the actual vertical spectral acceleration trends. We discuss the possible reasons behind the misrepresentation of vertical spectrum by the current code approach and introduce our own expressions to compute horizontal spectrum consistent vertical design spectrum from a comprehensive simulated dataset of correlated vertical and horizontal spectral ordinates.  相似文献   
44.
梅雨期暴雨系统的流依赖中尺度可预报性   总被引:1,自引:1,他引:1  
中尺度天气系统的初值敏感性,导致了中尺度系统预报极限的存在.中尺度系统的初始误差的快速增长及其中尺度可预报性依赖于系统流的特征.梅雨暴雨形成是多尺度天气系统共同作用的结果,决定了梅雨期暴雨的形成机制的多样性,也决定了其初值敏感性的差异性.本文重点对比分析了五种不同类型的梅雨暴雨的误差增长特征及其机制.冷空气抬升、低层涡...  相似文献   
45.
46.
“一带一路”沿线国家的生态风险研究有利于区域可持续发展,充分发挥对外辐射的作用,促进国家间经济流动、贸易畅通,实现共同繁荣。以孟加拉国博多河流域为例,选取1980—2017年期间的5期遥感影像,基于景观格局指数建立生态风险模型,综合运用空间自相关分析法、地统计学分析法、重心转移法等方法,研究流域景观格局变化特征以及生态风险演变规律。结果表明:(1)1980—2017年流域内景观类型主要是林地和耕地,且景观格局变化显著,耕地和湿地面积减少,林地、建设用地和未利用地面积增加;(2)1980年以来,流域生态风险整体呈下降趋势,但各类风险转化显著,除低风险区面积减少之外,其余风险区均存在不同程度的增加,各期流域生态风险重心均位于锡拉杰甘杰县,主要在流域中部沿南北方向发生偏移;(3)流域内各期的生态风险在空间上呈显著正相关关系,“高-高”集聚基本稳定,主要分布在博多河及其沿岸;“低-低”集聚变化显著,由博多河下游先向上游及流域西南部变化,后逐渐向流域西部和南部聚拢。研究结果为构建流域生态安全格局及进行生态风险预警工作等提供科学依据和理论支撑。  相似文献   
47.
Deformability of rock masses influencing their behavior is an important geomechanical property for the design of rock structures. Due to the difficulties in determining the deformability of jointed rock masses at the laboratory-scale, various in-situ test methods such as pressuremeter, dilatometer, plate loading tests etc. have been developed. Although these techniques are currently the best and direct methods, they are time-consuming and expensive, and present operational difficulties. In addition, the influence of the test volume on deformation modulus depending on the method employed is also important. For these reasons empirical equations to indirectly estimate the deformation modulus have also been recommended by several investigators as an alternative approach. In this study; the geomechanical quality of weak, heavily jointed, sheared and/or blocky greywacke rock masses, on which very concentrated civil works are continuing at the southern and southwestern parts of Ankara (Turkey), was assessed. The deformation modulus was determined by pressuremeter tests, the possible effects of variables on the derived deformation modulus from the pressuremeter test were evaluated by numerical methods, and the comparisons between the deformation modulus of the greywackes obtained from the pressuremeter tests and their geomechanical quality (GSI and RMR) were made. Numerical simulations revealed that the presence of a disturbed annulus around the borehole causes underestimation of the deformation modulus, while the effect of length to diameter ratio of the pressuremeter probe on the deformation modulus is minor. Based on the geo-engineering characterization assessments, mainly two greywacke rock masses with different geomechanical qualities were identified. Geotechnical quality of one of these rock masses was verified by the back analysis of two slope failures. The empirical equations to indirectly estimate the deformation modulus of the greywackes using their GSI and RMR values yielded high coefficients of correlation.  相似文献   
48.
The chemistry of rainwater was studied in three sites of a metropolitan city of Turkey to determine the spatial variation, sources affecting composition and the extent of their influence. The acidity of rainwater, Ca, Co, Cr, Zn, Ba, V and Ni showed significant spatial variations. The most of measured species were moderately to extremely enriched compared to the local soil, which is likely arisen from the anthropogenic activities. SO4 2?, K and Ca were found to be predominantly non-sea origin. Two receptor models, Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB), agreed well on the source contribution estimations of Al, K, Zn, V, Pb and Cr. The PMF and CMB resolved very similar source contribution profiles to the elemental concentrations of Ca, Zn, V, Pb, K and Na, which the majority of those resulted from mineral industries, bell casting+steel industries, fossil fuel burning, biomass burning+sea salt and sea salt, respectively. The PMF resolved the source contributions of long-transported emissions, particularly for Ba, Sr and Mn, which could not be estimated by the CMB.  相似文献   
49.
Empirical equations are presented for the prediction of displacement response ordinates for damping ratios of 2, 5, 10, 20 and 30% of critical and for response periods up to 4s, using 532 accelerograms from the strong‐motion databank from Europe and the Middle East. The records were all re‐processed and only employed for regressions at periods within the usable range, defined as a fraction of the filter cut‐off and depending on the instrument type (digital or analogue), earthquake magnitude and site class. The equations can be applied to predict the geometric mean displacement and pseudo‐acceleration spectra for earthquakes with moment magnitudes ( M ) between 5 and 7.6, and for distances up to 100km. The equations also include style‐of‐faulting and site class as explanatory variables. The predictions obtained from these new equations suggest that earlier European equations for spectral displacements underestimate the ordinates at longer periods as a result of severe filtering and the use of the spectral ordinates at periods too close to the filter cut‐off. The results also confirm that the period defining the start of the constant displacement plateau in the Eurocode 8 (EC8) spectrum is excessively short at 2s. The results not only show that the scaling factor defined in EC8 for estimating the spectral ordinates at damping ratios different from 5% of critical are a good general approximation, but also that this scaling varies with magnitude and distance (reflecting the influence of duration) and also displays a mild dependence on response period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
50.
Turkey is located in one of the most seismically active regions in the world. Characterizing seismic source zones in this region requires evaluation and integration of geological, geophysical, seismological and geodetical data. This first seismotectonic database for Turkey presented herein was prepared, under the framework of the National Earthquake Strategy and Action Plan—2023. The geographic information system (GIS)-based database includes maps of active faults, catalogues of instrumental and historical earthquakes, moment tensor solutions and data on crustal thickness. On the basis of these data, 18 major seismotectonic zones were delineated for Turkey and the surrounding region. The compilation and storage of the seismotectonic data sets in a digital GIS will allow analyses and systematic updates as new data accrete over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号