首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1653篇
  免费   66篇
  国内免费   38篇
测绘学   46篇
大气科学   126篇
地球物理   310篇
地质学   627篇
海洋学   100篇
天文学   418篇
综合类   10篇
自然地理   120篇
  2024年   5篇
  2023年   6篇
  2022年   11篇
  2021年   41篇
  2020年   36篇
  2019年   38篇
  2018年   48篇
  2017年   49篇
  2016年   57篇
  2015年   49篇
  2014年   52篇
  2013年   87篇
  2012年   63篇
  2011年   78篇
  2010年   85篇
  2009年   116篇
  2008年   86篇
  2007年   103篇
  2006年   87篇
  2005年   58篇
  2004年   83篇
  2003年   58篇
  2002年   58篇
  2001年   51篇
  2000年   40篇
  1999年   36篇
  1998年   37篇
  1997年   15篇
  1996年   17篇
  1995年   24篇
  1994年   15篇
  1992年   16篇
  1991年   6篇
  1989年   10篇
  1988年   5篇
  1987年   13篇
  1986年   6篇
  1985年   5篇
  1984年   9篇
  1983年   8篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1978年   6篇
  1977年   5篇
  1975年   8篇
  1974年   7篇
  1973年   6篇
  1970年   4篇
  1969年   5篇
排序方式: 共有1757条查询结果,搜索用时 15 毫秒
31.
The first large-scale international intercomparison of analytical methods for the determination of dissolved iron in seawater was carried out between October 2000 and December 2002. The exercise was conducted as a rigorously “blind” comparison of 7 analytical techniques by 24 international laboratories. The comparison was based on a large volume (700 L), filtered surface seawater sample collected from the South Atlantic Ocean (the “IRONAGES” sample), which was acidified, mixed and bottled at sea. Two 1-L sample bottles were sent to each participant. Integrity and blindness were achieved by having the experiment designed and carried out by a small team, and overseen by an independent data manager. Storage, homogeneity and time-series stability experiments conducted over 2.5 years showed that inter-bottle variability of the IRONAGES sample was good (< 7%), although there was a decrease in iron concentration in the bottles over time (0.8–0.5 nM) before a stable value was observed. This raises questions over the suitability of sample acidification and storage.  相似文献   
32.
Proterozoic orogens commonly host a range of hydrothermal ores that form in diverse tectonic settings at different times. However, the link between mineralization and the regional-scale tectonothermal evolution of orogens is usually not well understood, especially in areas subject to multiple hydrothermal events.Regional-scale drivers for mineral systems vary between the different classes of hydrothermal ore, but all involve an energy source and a fluid pathway to focus mineralizing fluids into the upper crust. The Mount Olympus gold deposit in the Proterozoic Capricorn Orogen of Western Australia, was regarded as an orogenic gold deposit that formed at ca. 1738 Ma during the assembly of Proterozoic Australia. However,the trace element chemistry of the pyrite crystals closely resembles those of the Carlin deposits of Nevada,with rims that display solid solution gold accompanied by elevated As, Cu, Sb, Hg, and Tl, surrounding gold-poor cores. New SHRIMP UeP b dating of xenotime intergrown with auriferous pyrite and ore-stage alteration minerals provided a weighted mean~(207) Pb*/~(206) Pb* date of 1769 ± 5 Ma, interpreted as the age of gold mineralization. This was followed by two discrete episodes of hydrothermal alteration at 1727 ± 7 Ma and 1673 ± 8 Ma. The three ages are linked to multiple reactivation of the crustal-scale Nanjilgardy Fault during repeated episodes of intracratonic reworking. The regional-scale drivers for Carlin-like gold mineralization at Mount Olympus are related to a change in tectonic regime during the final stages of the intracratonic 1820 -1770 Ma Capricorn Orogeny. Our results suggest that substantial sized Carlin-like gold deposits can form in an intracratonic setting during regional-scale crustal reworking.  相似文献   
33.
Artificial reefs are spatially complex habitats and serve as good model systems to study patterns of community succession and the response of epibiota to environmental clines over small spatial scales. Here, we quantified spatial heterogeneity in community composition and diversity of fouling communities across a number of environmental gradients that included water depth, surface orientation of habitats, exposure to currents, and shelter. Assemblage structure was quantified by spatially replicated photo transects on a recently scuttled large navy ship off the East Australian coast, lying in 27 m of water. A rich assemblage of epifauna had colonized the wreck within a year, dominated by barnacles, sponges and bryozoans. Community structure varied significantly over small spatial scales of meters to tens of meters. Depth, surface orientation and exposure were the major environmental drivers. Assemblages were substantially less diverse and abundant on the deepest (23 m near the seafloor) part of the hull with residual antifouling paint, on sheltered surfaces inside the wreck, and on the sediment‐laden horizontal surfaces. Overall, the wrecks’ habitat complexity corresponds with small‐scale heterogeneity in the fouling communities. This study supports the notion that wrecks enhance local diversity and biomass within the habitat mosaic of their location, and habitat complexity may be an important mechanism for this, as demonstrated by the large spatial variability in the assemblages documented here.  相似文献   
34.
Northeastern (NE) China is a well-documented example of a collisional zone characterized by widespread post-orogenic granites and mafic–ultramafic complexes. Based on a study of the Hongqiling and Piaohechuan Cu–Ni sulfide-bearing mafic–ultramafic complexes in central Jilin province, we present geological, petrological, geochemical and geochronological data which indicates their post-orogenic origin.The Hongqiling complex comprises pyroxenite, olivine websterite, lherzolite, gabbro and leucogabbro. Zircon U–Pb SHRIMP analyses on a leucogabbro of the Hongqiling complex yield a weighted mean 206Pb–238U age of 216±5 Ma. The Piaohechuan complex is composed of gabbro, pyroxenite and dolerite, exposed as dikes. A plagioclase-bearing pyroxenite has a U–Pb zircon weighted mean 206Pb–238U age of 217±3 Ma, identical to that of the Hongqiling complex. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than the regional metamorphism (240 Ma) and syn-orogenic granitic magmatism (246±4 Ma). This suggests that these mafic–ultramafic complexes are post-orogenic in origin. The age data also indicated a short period of lithospheric stabilization of about 30 Ma after cessation of orogenic activity.Geochemical investigation indicates that the primary mafic magma was a lithospheric mantle-derived basalt resulting from the upwelling of asthenosphere due to lithospheric delamination during post-orogenic processes. The magmatic source was contaminated by a small amount of crustal material, and subsequent crystal fractionation resulted in the Cu–Ni mineralization.The widespread occurrence of mafic–ultramafic complexes in the Xing'an–Mongolian Orogenic Belt of NE China and in the Altay–Tianshan–Junggar Orogenic Belt of Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as the heat source for associated late-stage granitic magmas.  相似文献   
35.
Carbon emissions—and hence fossil fuel combustion—must decline rapidly if warming is to be held below 1.5 or 2 °C. Yet fossil fuels are so deeply entrenched in the broader economy that a rapid transition poses the challenge of significant transitional disruption. Fossil fuels must be phased out even as access to energy services for basic needs and for economic development expands, particularly in developing countries. Nations, communities, and workers that are economically dependent on fossil fuel extraction will need to find a new foundation for livelihoods and revenue. These challenges are surmountable. In principle, societies could undertake a decarbonization transition in which they anticipate the transitional disruption, and cooperate and contribute fairly to minimize and alleviate it. Indeed, if societies do not work to avoid that disruption, a decarbonization transition may not be possible at all. Too many people may conclude they will suffer undue hardship, and thus undermine the political consensus required to undertake an ambitious transition. The principles and framework laid out here are offered as a contribution to understanding the nature of the potential impacts of a transition, principles for equitably sharing the costs of avoiding them, and guidance for prioritizing which fossil resources can still be extracted.  相似文献   
36.
The IAU Working Group on Precession and the Equinox looked at several solutions for replacing the precession part of the IAU 2000A precession–nutation model, which is not consistent with dynamical theory. These comparisons show that the (Capitaine et al., Astron. Astrophys., 412, 2003a) precession theory, P03, is both consistent with dynamical theory and the solution most compatible with the IAU 2000A nutation model. Thus, the working group recommends the adoption of the P03 precession theory for use with the IAU 2000A nutation. The two greatest sources of uncertainty in the precession theory are the rate of change of the Earth’s dynamical flattening, ΔJ2, and the precession rates (i.e. the constants of integration used in deriving the precession). The combined uncertainties limit the accuracy in the precession theory to approximately 2 mas cent−2. Given that there are difficulties with the traditional angles used to parameterize the precession, zA, ζA, and θA, the working group has decided that the choice of parameters should be left to the user. We provide a consistent set of parameters that may be used with either the traditional rotation matrix, or those rotation matrices described in (Capitaine et al., Astron. Astrophys., 412, 2003a) and (Fukushima Astron. J., 126, 2003). We recommend that the ecliptic pole be explicitly defined by the mean orbital angular momentum vector of the Earth–Moon barycenter in the Barycentric Celestial Reference System (BCRS), and explicitly state that this definition is being used to avoid confusion with previous definitions of the ecliptic. Finally, we recommend that the terms precession of the equator and precession of the ecliptic replace the terms lunisolar precession and planetary precession, respectively.  相似文献   
37.
The hydrogen isotope fractionation factors between epidote and aqueous 1 M and 4 M NaCl, 1 M CaCl2 solutions, and between epidote and seawater, have been measured over the temperature range 250–550°C over which the degree of dissociation of dissolved species varies significantly. Measured fractionations at 350°C are decreased by up to 12‰, 9‰ and 7‰ relative to pure water in seawater, 1 M CaCl2 and 1 M NaCl respectively, while above 500°C fractionations are not measurably dependent on fluid composition. Water—solution fractionation factors are derived which are generally applicable to the correction of mineral—water hydrogen isotope fractionations for the composition of the fluid phase.The hydrogen isotope compositions of natural epidotes are interpreted in the light of experimental fractionation data for situations where temperature, δD (fluid), and, in some cases, fluid chemistry, are independently known. Epidotes from active geothermal systems have hydrogen isotope quench temperatures consistent with or close to measured well temperatures unless the measured temperature has declined substantially since epidote formation or there is uncertainty in the D/H ratio of the water associated with the epidote because of isotopic heterogeneity in the well waters. Hydrothermal and metamorphic epidotes show closure temperatures of 175–225°C and 200–250°C. There is no evidence that retrograde metamorphic fluids, if present, are isotopically different from prograde fluids.The water-solution fractionations indicate strong solute-solvent interactions between 250 and 450°C and imply that both dissociated and associated species contribute to the fractionation effects through modification of the orientations and structure of the water molecules. Solute-solvent interactions become negligible at temperatures around 550°C.  相似文献   
38.
Salt marshes accrete both organic and inorganic sediments. Here we present analytical and numerical models of salt marsh sedimentation that, in addition to capturing inorganic processes, explicitly account for above- and belowground organic processes including root growth and decay of organic carbon. The analytical model is used to examine the bias introduced by organic processes into proxy records of sedimentation, namely 137Cs and 210Pb. We find that accretion rates estimated using 210Pb will be less than accretion rates estimated using the 137Cs peak in steadily accreting marshes if (1) carbon decay is significant and (2) data for 210Pb extend below the 137Cs peak. The numerical model expands upon the analytical model by including belowground processes such as compaction and root growth, and by explicitly tracking the evolution of aboveground biomass and its effect on sedimentation rates. Using the numerical model we explore how marsh stratigraphy responds to sediment supply and the rate of sea-level rise. It is calibrated and tested using an extensive data set of both marsh stratigraphy and measurements of vegetation dynamics in a Spartina alterniflora marsh in South Carolina, USA. We find that carbon accumulation in marshes is nonlinearly related to both the supply of inorganic sediment and the rate of sea-level rise; carbon accumulation increases with sea-level rise until sea-level rise reaches a critical rate that drowns the marsh vegetation and halts carbon accumulation. The model predicts that changes in carbon storage resulting from changing sediment supply or sea-level rise are strongly dependent on the background sediment supply: if inorganic sediment supply is reduced in an already sediment poor marsh the storage of organic carbon will increase to a far greater extent than in a sediment-rich marsh, provided that the rate of sea-level rise does not exceed a threshold. These results imply that altering sediment supply to estuaries (e.g., by damming upstream rivers or altering littoral sediment transport) could lead to significant changes in the carbon budgets of coastal salt marshes.  相似文献   
39.
The Mangshan Plateau is located on the south bank of the Huang He (Yellow River) just west of the city of Zhengzhou, well outside the Loess Plateau in central China. Mixing models of the grain‐size data indicate that the loess deposits are mixtures of three loess components. Comparison of the mixing model with existing models established for a series of loess–palaeosol sequences from the Loess Plateau indicates that the Mangshan loess has been supplied from a proximal dust source, the Huang He floodplain, during major dust outbreaks. The high accumulation rates, the composition of the loess components, and especially the high proportions of a sandy loess component support this. Owing to the exceptionally high accumulation rates, the Mangshan grain size, magnetic susceptibility and carbonate records provide a high‐resolution archive of environmental and climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
40.
Although temperature is an important determinant of many biogeochemical processes in groundwater, very few studies have attempted to forecast the response of groundwater temperature to future climate warming. Using a composite linear regression model based on the lagged relationship between historical groundwater and regional air temperature data, empirical forecasts were made of groundwater temperature in several aquifers in Switzerland up to the end of the current century. The model was fed with regional air temperature projections calculated for greenhouse‐gas emissions scenarios A2, A1B, and RCP3PD. Model evaluation revealed that the approach taken is adequate only when the data used to calibrate the models are sufficiently long and contain sufficient variability. These conditions were satisfied for three aquifers, all fed by riverbank infiltration. The forecasts suggest that with respect to the reference period 1980 to 2009, groundwater temperature in these aquifers will most likely increase by 1.1 to 3.8 K by the end of the current century, depending on the greenhouse‐gas emissions scenario employed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号