首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1573篇
  免费   81篇
  国内免费   38篇
测绘学   45篇
大气科学   125篇
地球物理   304篇
地质学   609篇
海洋学   98篇
天文学   384篇
综合类   10篇
自然地理   117篇
  2024年   5篇
  2023年   5篇
  2022年   9篇
  2021年   42篇
  2020年   36篇
  2019年   38篇
  2018年   48篇
  2017年   45篇
  2016年   56篇
  2015年   48篇
  2014年   51篇
  2013年   80篇
  2012年   62篇
  2011年   79篇
  2010年   82篇
  2009年   115篇
  2008年   85篇
  2007年   101篇
  2006年   87篇
  2005年   57篇
  2004年   81篇
  2003年   55篇
  2002年   57篇
  2001年   50篇
  2000年   39篇
  1999年   35篇
  1998年   36篇
  1997年   14篇
  1996年   12篇
  1995年   21篇
  1994年   15篇
  1992年   15篇
  1991年   6篇
  1989年   10篇
  1987年   13篇
  1986年   6篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   6篇
  1978年   4篇
  1977年   5篇
  1975年   5篇
  1974年   5篇
  1973年   4篇
  1971年   3篇
  1969年   5篇
  1968年   3篇
排序方式: 共有1692条查询结果,搜索用时 0 毫秒
381.
382.
We discuss equilibrium changes in daily extreme surface air temperature and precipitation events in response to doubled atmospheric CO2, simulated in an ensemble of 53 versions of HadSM3, consisting of the HadAM3 atmospheric general circulation model (GCM) coupled to a mixed layer ocean. By virtue of its size and design, the ensemble, which samples uncertainty arising from the parameterisation of atmospheric physical processes and the effects of natural variability, provides a first opportunity to quantify the robustness of predictions of changes in extremes obtained from GCM simulations. Changes in extremes are quantified by calculating the frequency of exceedance of a fixed threshold in the 2 × CO2 simulation relative to the 1 × CO2 simulation. The ensemble-mean value of this relative frequency provides a best estimate of the expected change while the range of values across the ensemble provides a measure of the associated uncertainty. For example, when the extreme threshold is defined as the 99th percentile of the 1 × CO2 distribution, the global-mean ensemble-mean relative frequency of extremely warm days is found to be 20 in January, and 28 in July, implying that events occurring on one day per hundred under present day conditions would typically occur on 20–30 days per hundred under 2 × CO2 conditons. However the ensemble range in the relative frequency is of similar magnitude to the ensemble-mean value, indicating considerable uncertainty in the magnitude of the increase. The relative frequencies in response to doubled CO2 become smaller as the threshold used to define the extreme event is reduced. For one variable (July maximum daily temperature) we investigate this simulated variation with threshold, showing that it can be quite well reproduced by assuming the response to doubling CO2 to be characterised simply as a uniform shift of a Gaussian distribution. Nevertheless, doubling CO2 does lead to changes in the shape of the daily distributions for both temperature and precipitation, but the effect of these changes on the relative frequency of extreme events is generally larger for precipitation. For example, around one-fifth of the globe exhibits ensemble-mean decreases in time-averaged precipitation accompanied by increases in the frequency of extremely wet days. The ensemble range of changes in precipitation extremes (relative to the ensemble mean of the changes) is typically larger than for temperature extremes, indicating greater uncertainty in the precipitation changes. In the global average, extremely wet days are predicted to become twice as common under 2 × CO2 conditions. We also consider changes in extreme seasons, finding that simulated increases in the frequency of extremely warm or wet seasons under 2 × CO2 are almost everywhere greater than the corresponding increase in daily extremes. The smaller increases in the frequency of daily extremes is explained by the influence of day-to-day weather variability which inflates the variance of daily distributions compared to their seasonal counterparts.  相似文献   
383.
We present a new and completely general technique for calculating the fine-grained phase-space structure of dark matter (DM) throughout the Galactic halo. Our goal is to understand this structure on the scales relevant for direct and indirect detection experiments. Our method is based on evaluating the geodesic deviation equation along the trajectories of individual DM particles. It requires no assumptions about the symmetry or stationarity of the halo formation process. In this paper we study general static potentials which exhibit more complex behaviour than the separable potentials studied previously. For ellipsoidal logarithmic potentials with a core, phase mixing is sensitive to the resonance structure, as indicated by the number of independent orbital frequencies. Regions of chaotic mixing can be identified by the very rapid decrease in the real-space density of the associated DM streams. We also study the evolution of stream-density in ellipsoidal NFW haloes with radially varying isopotential shape, showing that if such a model is applied to the Galactic halo, at least 105 streams are expected near the Sun. The most novel aspect of our approach is that general non-static systems can be studied through implementation in a cosmological N -body code. Such an implementation allows a robust and accurate evaluation of the enhancements in annihilation radiation due to fine-scale structure such as caustics. We embed the scheme in the current state-of-the-art code gadget -3 and present tests which demonstrate that N -body discreteness effects can be kept under control in realistic configurations.  相似文献   
384.
We have investigated the distribution and isotopic composition of nitrogen and noble gases, and the Ar-Ar chronology of the Bencubbin meteorite. Gases were extracted from different lithologies by both stepwise heating and vacuum crushing. Significant amounts of gases were found to be trapped within vesicles present in silicate clasts. Results indicate a global redistribution of volatile elements during a shock event caused by an impactor that collided with a planetary regolith. A transient atmosphere was created that interacted with partially or totally melted silicates and metal clasts. This atmosphere contained 15N-rich nitrogen with a pressure ?3 × 105 hPa, noble gases, and probably, although not analyzed here, other volatile species. Nitrogen and noble gases were re-distributed among bubbles, metal, and partly or totally melted silicates, according to their partition coefficients among these different phases. The occurrence of N2 trapped in vesicles and dissolved in silicates indicates that the oxygen fugacity (fO2) was greater than the iron-wüstite buffer during the shock event. Ar-Ar dating of Bencubbin glass gives an age of 4.20 ± 0.05 Ga, which probably dates this impact event. The cosmic-ray exposure age is estimated at ∼40 Ma with two different methods. Noble gases present isotopic signatures similar to those of “phase Q” (the major host of noble gases trapped in chondrites) but elemental patterns enriched in light noble gases (He, Ne and Ar) relative to Kr and Xe, normalized to the phase Q composition. Nitrogen isotopic data together with 40Ar/36Ar ratios indicate mixing between a 15N-rich component (δ15N = +1000‰), terrestrial N, and an isotopically normal, chondritic N.Bencubbin and related 15N-rich meteorites of the CR clan do not show stable isotope (H and C) anomalies, precluding contribution of a nucleosynthetic component as the source of 15N enrichments. This leaves two possibilities, trapping of an ancient, highly fractionated atmosphere, or degassing of a primitive, isotopically unequilibrated, nitrogen component. Although the first possibility cannot be excluded, we favor the contribution of primitive material in the light of the recent finding of extremely 15N-rich anhydrous clasts in the CB/CH Isheyevo meteorite. This unequilibrated material, probably carried by the impactor, could have been insoluble organic matter extremely rich in 15N and hosting isotopically Q-like noble gases, possibly from the outer solar system.  相似文献   
385.
Using the standard equation for the slowdown of a neutron star, we derive a formula for the braking index via integration rather than the conventional differentiation. The new formula negates the need to measure the second time derivative of the rotation frequency, ν¨ . We show that the method gives similar braking indices for PSR B1509−58 and the Crab pulsar to those already in the literature. We point out that our method is useful for obtaining the braking indices of moderate-aged pulsars without the need for long, phase-connected timing solutions. We applied the method to 20 pulsars and discuss the implications of the results. We find that virtually all the derived braking indices are dominated by the effects of (unseen) glitches, the recovery from which corrupts the value of ν˙ . However, any real, large, positive braking index has implications for magnetic field decay and offers support to recent models of pulsar evolution.  相似文献   
386.
Investigating the relationships between climate extremes and crop yield can help us understand how unfavourable climatic conditions affect crop production. In this study, two statistical models, multiple linear regression and random forest, were used to identify rainfall extremes indices affecting wheat yield in three different regions of the New South Wales wheat belt. The results show that the random forest model explained 41–67% of the year-to-year yield variation, whereas the multiple linear regression model explained 34–58%. In the two models, 3-month timescale standardized precipitation index of Jun.–Aug. (SPIJJA), Sep.–Nov. (SPISON), and consecutive dry days (CDDs) were identified as the three most important indices which can explain yield variability for most of the wheat belt. Our results indicated that the inter-annual variability of rainfall in winter and spring was largely responsible for wheat yield variation, and pre-growing season rainfall played a secondary role. Frequent shortages of rainfall posed a greater threat to crop growth than excessive rainfall in eastern Australia. We concluded that the comparison between multiple linear regression and machine learning algorithm proposed in the present study would be useful to provide robust prediction of yields and new insights of the effects of various rainfall extremes, when suitable climate and yield datasets are available.  相似文献   
387.
Topographic models provide a useful tool for understanding gully occurrence in the landscape but require reliable estimates of gully head drainage areas. Modern high-resolution topography data (collected using structure from motion photogrammetry or light detection and ranging) is increasingly used for topographic studies of gullies, but little work has been done to assess the variability of gully head drainage area estimates using different methods. This study evaluated alternative approaches to using high-resolution digital elevation models (DEMs) so that gully topographic models can be more readily applied to any area with suitably high-resolution data. Specifically, we investigated the impact of single- or multiple-direction flow routing algorithms, DEM hydrologic-enforcement procedures and spatial resolution on gully head drainage area estimation. We tested these methods on a 40 km2 site centred on Weany Creek, a low-relief semi-arid landscape draining towards the Great Barrier Reef, Australia. Using a subroutine to separate gully heads into those with divergent or convergent flow patterns upslope, we found that divergent flow conditions occurred at half of 484 studied gullies. Drainage areas estimated by different flow routing algorithms were more variable in these divergent cases than for convergent cases. This variation caused a significant difference between topographic threshold parameters (slope b and intercept k) derived from single- or multiple-direction flow routing algorithms, respectively. Different methods of hydrologic enforcement (filling or breaching) also affected threshold analysis, resulting in estimates of the exponent b being ~188% higher if the DEM was filled than if breached. The testing of the methods to date indicates that a finer resolution (≤2 m) DEM and a multiple-direction flow routing algorithm achieve the most realistic drainage area estimates in low-relief landscapes. For Weany Creek we estimated threshold parameters k = 0.033 and b = 0.189, indicating that it is highly susceptible to gully erosion.  相似文献   
388.
Ti valence measurements in MgAl2O4 spinel from calcium‐aluminum‐rich inclusions (CAIs) by X‐ray absorption near‐edge structure (XANES) spectroscopy show that many spinels have predominantly tetravalent Ti, regardless of host phases. The average spinel in Allende type B1 inclusion TS34 has 87% Ti+4. Most spinels in fluffy type A (FTA) inclusions also have high Ti valence. In contrast, the rims of some spinels in TS34 and spinel grain cores in two Vigarano type B inclusions have larger amounts of trivalent titanium. Spinels from TS34 have approximately equal amounts of divalent and trivalent vanadium. Based on experiments conducted on CAI‐like compositions over a range of redox conditions, both clinopyroxene and spinel should be Ti+3‐rich if they equilibrated with CAI liquids under near‐solar oxygen fugacities. In igneous inclusions, the seeming paradox of high‐valence spinels coexisting with low‐valence clinopyroxene can be explained either by transient oxidizing conditions accompanying low‐pressure evaporation or by equilibration of spinel with relict Ti+4‐rich phases (e.g., perovskite) prior to or during melting. Ion probe analyses of large spinel grains in TS34 show that they are enriched in heavy Mg, with an average Δ25Mg of 4.25 ± 0.028‰, consistent with formation of the spinel from an evaporating liquid. Δ25Mg shows small, but significant, variation, both within individual spinels and between spinel and adjacent melilite hosts. The Δ25Mg data are most simply explained by the low‐pressure evaporation model, but this model has difficulty explaining the high Ti+4 concentrations in spinel.  相似文献   
389.
3D seismic data from the Dogger Bank, North Sea, allow the mapping of Late Pleistocene and Holocene depositional systems in unprecedented detail. The data demonstrate that glacial processes resulted in the development of incised tunnel valley systems during the Weichselian and that these were subsequently modified by fluvial processes in a pro-glacial setting. Subsequently, the Dogger Bank formed an emergent plain during the Holocene with a complex meandering river system, associated tributary or distributary channels and lakes, dominating the region. Prior to the sea level rising sufficiently to submerge the Dogger Bank around 7500 yr ago, the meandering river system was replaced by a dendritic channel network of potential fluvial, estuarine or intertidal origin. As the Holocene depositional features bear no systematic relationship to the bathymetry this study demonstrates that previously published bathymetry-based models for the Holocene palaeogeographic development of the North Sea require modification.  相似文献   
390.
Post-collision magmatism and tectonics in northwest Anatolia   总被引:1,自引:0,他引:1  
A suite of biotite-hornblende granodiorite intrusions has been emplaced into blueschist-facies metasediments in northwest Anatolia, following collision between two continental margins, now represented by the Tavanli and Sakarya zones. The 40Ar/39Ar ages of phengites and glaucophanes from the blueschists, metamorphosed under unusually high P-low T conditions (P=20±2 kbar, T=430±30° C), suggest that metamorphism apparently occurred over a period spanning at least 20 Ma from 108 to 88 Ma. Post-tectonic granodiorites were emplaced during the Eocene (53 to 48 Ma) resulting in a cordierite and andalusite-bearing thermal aureole, indicative of pressures of 3 kbar. Trace-element systematics of the granodiorites are consistent with a derivation either from mantle-derived magmas by fractional crystallisation in shallow magma chambers, or from anatexis of crustal lithologies of internediate composition at pressures <10 kbar. The preservation of high P-low T assemblages in the blueschists together with the range of ages determined for blueschist-facies metamorphism are indicative of rapid exhumation of delaminated fragments from a subducted continental margin. However decompression melting of the crust is unlikely to have been a significant cause of magmatism, both because exhumation of the blueschists from deep crustal levels predated magmatism by at least 25 Ma, and because of the small melt fraction (<0.1) that may be generated in crustal lithologies by this process. Melting in the mantle wedge is required either to generate a primary melt for the derivation of magmas of intermediate composition or to provide an advective heat source for crustal melting. The cause of melt formation in the upper mantle may be related to the termination of subduction following collision during the Mid-Eocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号