Abstract The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry. 相似文献
Rainfall-induced slope instabilities are ubiquitous in nature, but simulation of this type of hazards with centrifuge modelling still poses difficulties. In this paper, we introduce a rainfall device for initiating slope failure in a medium-sized centrifuge. This rainfall system is simple, robust and affordable. An array of perforated hoses is placed close above the model slope surface to generate the raindrops. The rainfall intensity depends on the centrifuge acceleration and the flow rate of the water supply, which is controlled by the size and number of the tiny pinholes in the hose walls. The rainfall intensities that are tested range from 2.5–30 mm/h, covering the intensity range of moderate, heavy and torrential rainfall events. Our model test with rainfall-induced slope failure shows that this system is capable of generating relatively uniform rainfall of wide intensities and leads to various patterns of slope failure.
Acta Geotechnica - Microbially induced carbonate precipitation (MICP) has been actively investigated as a promising method to improve soil properties. A burning issue impeding its wide application... 相似文献