首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   4篇
  国内免费   1篇
地球物理   17篇
地质学   10篇
海洋学   2篇
天文学   3篇
自然地理   1篇
  2023年   1篇
  2018年   4篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1999年   1篇
  1993年   2篇
  1991年   1篇
  1987年   1篇
  1975年   1篇
排序方式: 共有33条查询结果,搜索用时 46 毫秒
21.
Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).  相似文献   
22.
Recent earthquakes show that pipeline damage is severe in the areas where permanent ground deformations (e.g., liquefaction zones) occur. Ground movement hazard to pipeline systems can be assessed by using ground displacement measurements around the location of pipelines. There are many different ways of measuring ground displacements after an earthquake occur. This paper compares displacements measured in Avonside area, Christchurch, NZ, by using four different ways with respect to their effects on pipeline damage assessments. They are air photo, satellite, high resolution light detection and ranging (LiDAR) surveys data presented at 4- and 56-m grids acquired before and after the Mw6.2 22 February 2011 earthquake. Avonside area was in the liquefaction zones of the 22 February 2011 earthquake. Where possible, benchmark measurements were also included in the comparisons. In this study, the focus was on asbestos cement and cast iron water pipelines as the length of the pipelines and the number of damages in the study area was much higher compared to other pipe materials, providing sufficient repair rate data passing the screening criteria to develop linear regressions. The correlations between pipeline damage and lateral ground strains were developed by calculating the horizontal strains from these four different type displacements. The comparisons show that satellite imagery is good for estimating total movements but not so good for estimating lateral strains and conversely LiDAR surveys are not so good for estimating total movements, but much better for estimating lateral strains. Hence, pipeline damage correlations with LiDAR calculated strains provide higher determination coefficient (r2) value. The results of comparisons are presented and discussed.  相似文献   
23.
To investigate the physical property anisotropies of foliated fault rocks in subduction zones, the hanging wall phyllites and footwall cataclasites exhumed along the Nobeoka Thrust, a fossilized out‐of‐sequence‐thrust in the Shimanto Belt, Japan, was focused. Discrete physical property (electric resistivity, P‐ and S‐wave velocities, and porosity) measurements were conducted employing geologic coordinates (depth‐parallel direction, strike direction, and maximum dip direction of foliation), using the core samples obtained from the Nobeoka Thrust Drilling Project and compared the data to borehole geophysical logs. A higher sample P‐wave velocity (Vp), lower S‐wave velocity (Vs), higher Vp/Vs, and lower sample porosity and resistivity compared to the logs, are inferred to have been caused by the larger sampling scale of the logs and lower fluid saturation of the borehole. The phyllites and cataclasites exhibited substantial vertical and horizontal anisotropy of Vp (0.4–17.3 % and 2.7–13.8 %, respectively), Vs (0.5–56 % and 7.7–43 %, respectively), and resistivity (0.9–119 % and 2.0–65.9 %, respectively). The physical property anisotropies are primarily affected by the dip angles of foliation. The fault rocks that have gentler dip angles exhibit a higher Vp in the strike and maximum dip direction and a lower Vp in the depth‐parallel direction. In contrast, the fault rocks that have steeply dipping structures show a higher Vp in the strike and depth‐parallel directions with a lower velocity in the maximum dip direction. Resistivity anisotropy show a trend opposite to that of the Vp in relation to the dip angles. Our results show lower Vp anisotropy than those obtained in previous studies, which measured wave speeds perpendicular or parallel to foliation under confining pressure. This study highlights the significance of dip angles on vertical properties in geophysical surveys across foliated fault rocks.  相似文献   
24.
Laboratory measurements for compressional and shear wave velocities (Vp and Vs, respectively) and porosity were conducted with core samples from the Nobeoka Thrust Drilling Project (NOBELL) under controlled effective pressure (5–65 MPa at 5 MPa intervals) and wet conditions. Samples were classified according to deformation texture as phyllite, foliated cataclasite, or non‐foliated cataclasite. Measured values of Vp, Vs, and porosity are within a range of 5.17–5.57 km/s, 2.60–2.71 km/s, and 2.75–3.10 %, respectively, for phyllite; 4.89–5.23 km/s, 2.46–2.57 km/s, and 3.58–4.53 %, respectively, for foliated cataclasite; and 4.90–5.32 km/s, 2.51–2.63 km/s, and 3.79–4.60 %, respectively, for non‐foliated cataclasite, which are all consistent with the previous laboratory experiments conducted with outcrop samples under dry conditions. However, our results also indicate higher Vp and Vs and lower porosity than those measured by the previous studies that adopted the wire‐line logging methods. The variations in Vp, Vs, and porosity are controlled by deformation structure and are greater for phyllite and foliated cataclasite than for non‐foliated cataclasite.  相似文献   
25.
Melt‐origin pseudotachylyte is the most reliable seismogenic fault rock. It is commonly believed that pseudotachylyte generation is rare in the plate subduction zone where interstitial fluids are abundant and can trigger dynamic fault‐weakening mechanisms such as thermal pressurization. Some recent studies, however, have discovered pseudotachylyte‐bearing faults in exhumed ancient accretionary complexes, indicating that frictional melting also occurrs during earthquakes in subduction zones. To clarify the pseudotachylyte generation mechanism and the variation of slip behavior in the plate subduction zone, a pseudotachylyte found in the exhumed fossil accretionary complex (the Shimanto Belt, Nobeoka, Japan) was re‐focused and microscopic and three‐dimensional observations of the pseudotachylyte‐bearing fault were performed based on optical, electron, and X‐ray microscope images. Based on the patterns contained in the fragment, the pseudotachylyte is divided into four domains, although no clear domain boundaries or layering structures are not found. Three‐dimensional observation also suggests that the pseudotachylyte were fragmented or isolated by cataclasite or carbonate breccia. The pseudotachylyte was rather injected into the surrounding carbonate breccia, which is composed of angular fragments of the host rock and a matrix of tiny crystalline carbonate. The pseudotachylyte volume was extracted from the X‐ray microscope image and the heat abundance consumed by the pseudotachylyte generation was estimated at 2.18 MJ/m2, which can be supplied during a slip of approximately 0.5 m. These observations and calculations, together with the results of the previous investigations, suggest hydrofracturing and rapid carbonate precipitation that preceded or accompanied the frictional melting. Dynamic hydrofracturing during a slip can be caused by rapid fluid pressurization, and can induce abrupt decrease in fluid pressure while drastically enhancing the shear strength of the shear zone. Consequently, frictional heating would be reactivated and generate the pseudotachylyte. These deformation processes can explain pseudotachylyte generation in hydrous faults with the impermeable wall rock.  相似文献   
26.
The Nobeoka Thrust, an ancient megasplay fault in the Shimanto Belt, southwestern Japan, contains fault rocks from the seismogenic zone, providing an accessible analog of active megasplay faults in deep subduction settings. In this study, the paleostress along the Nobeoka Thrust was analyzed using multiple inversion techniques, including k‐means clustering of fault datasets acquired from drillcores that intersected the thrust. The six resultant stress orientation clusters can be divided into two general groups: stress solutions with north–south‐trending σ1 axes, and those with east–west‐trending σ1 axes. These groups are characterized by the temporal changes for the orientations of the σ1 and σ3 principal stress axes that involve alternation between horizontal and vertical. The findings are probably due to a change in stress state before and after earthquakes that occurred on the fault; similar changes have been observed in active tectonic settings, such as the 2011 Tohoku‐Oki earthquake (Japan).  相似文献   
27.
28.
29.
The seasonal variation of phytoplankton biomass and primary productivity in a heavily eutrophic embayment, Dokai Bay, Japan, was determined. Dokai Bay was characterized by high phytoplankton biomass and productivity during summer and low phytoplankton biomass and productivity during other seasons. The results suggested that phytoplankton growth was limited by only irradiance and water temperature under the high nutrient concentrations available for phytoplankton growth in the entire year. Moreover, in spite of sufficient nutrient for phytoplankton growth in the entire year, a red tide occurred only in the summer period in this bay. Our results suggested that a red tide occurred by the high phytoplankton growth rate in the summer season, but in other periods surface phytoplankton was flushed out of the bay before forming the red tide, because phytoplankton growth rate was low and could not form the red tide due to low irradiance and low water temperature.  相似文献   
30.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号