The sandstone-type Cu deposits in the Chuxiong Basin occur in the Cretaceous Gaofengsi Formation and the Maotoushan Formation and the orebodies are stratoid and lenticular in form, structurally controlled by their stratigraphical position. Ore structures are dominated by impregnated and striped ones. In addition, it has been observed that copper mineralization is controlled by water-discharge and deformation structures. Orebodies are commonly seen on the gently inclined limbs of the anticline, with the involution front. Copper mineralization shows a distinct zonation. S, Pb isotope and REE data suggest that the copper would stem from the country rocks and the sulfur largely from the lower strata. During diagenesis oxidized Cu-bearing brines derived from the upper parts and reduced brines from the lower parts are involved in metallogenetic reactions in the stress neutral plane, which is the key to the formation of copper deposits in the Chuxiong Basin.
Two field studies were conducted to measure pigments in the Southern Yellow Sea (SYS) and the northern East China Sea (NECS) in April (spring) and September (autumn) to evaluate the distribution pattern of phytoplankton stock (Chl a concentration) and the impact of hydrological features such as water mass, mixing and tidal front on these patterns. The results indicated that the Chl a concentration was 2.43±2.64 (Mean ± SD) mg m?3 in April (range, 0.35 to 17.02 mg m?3) and 1.75±3.10 mg m?3 in September (from 0.07 to 36.54 mg m?3) in 2003. Additionally, four areas with higher Chl a concentrations were observed in the surface water in April, while two were observed in September, and these areas were located within or near the point at which different water masses converged (temperature front area). The distribution pattern of Chl a was generally consistent between onshore and offshore stations at different depths in April and September. Specifically, higher Chl a concentrations were observed along the coastal line in September, which consisted of a mixing area and a tidal front area, although the distributional pattern of Chl a concentrations varied along transects in April. The maximum Chl a concentration at each station was observed in the surface and subsurface layer (0–10 m) for onshore stations and the thermocline layer (10–30 m) for offshore stations in September, while the greatest concentrations were generally observed in surface and subsurface water (0–10 m) in April. The formation of the Chl a distributional pattern in the SYS and NECS and its relationship with possible influencing factors is also discussed. Although physical forces had a close relationship with Chl a distribution, more data are required to clearly and comprehensively elucidate the spatial pattern dynamics of Chl a in the SYS and NECS. 相似文献
Urbanization in modern times led to a series of development strategies that brought new opportunities in China. Rapid urbanization caused severe stress to the ecosystems and the environment. Using the center-of-gravity(COG) method and parameters such as population, economy, and land, we studied the urbanization pattern in Songhua River Basin and its southern source sub-basin from 1990 to 2010. Urbanization was analyzed based on the COG position, eccentric distance, movement direction of COG, and distance of COG movement. Various characteristics of urbanization in the southern source sub-basin of the Songhua River were explained in relation to the whole Songhua River Basin. Urbanization in the southern source sub-basin of the Songhua River is balanced, relatively advanced, and stable compared to the whole Songhua River Basin. The average eccentric distance between the urbanization COGs in the Songhua River′s south source basin indicated rapid expansion of land urbanization during the span of this study. A basic pattern of urbanization COG in the whole Songhua Basin was observed, but there existed differences among the three aspects of urbanization process. Land urbanization is still in its active stage, so future studies should focus on analysis of such urbanization trends. 相似文献
We have investigated the correlations among color, morphology and luminosity for all LRGs, cut I LRGs, cut II LRGs, and Main
galaxies that are also classified as LRGs. It is found that the morphology of LRGs is tightly correlated with luminosity.
The rest-frame u-g color of cut I LRGs and cut II LRGs is nearly independent of luminosity, but the color of Main galaxies
is correlated with luminosity. For cut I LRGs and Main galaxies, the early type proportion apparently changes with color:
at the rest-frame u-g < 1.3 it increases strongly with increasing color, while at the rest-frame u-g > 1.3 it decreases with
increasing color. We also notice that the morphology of cut II LRGs is only a weak function of color.
Published in Astrofizika, Vol. 50, No. 3, pp. 335–345 (August 2007). 相似文献
Using nine years of solar wind plasma and magnetic field data from the Wind mission, we investigated the characteristics of both magnetic clouds (MCs) and magnetic cloud-like structures (MCLs) during
1995 – 2003. A MCL structure is an event that is identified by an automatic scheme (Lepping, Wu, and Berdichevsky, Ann. Geophys.23, 2687, 2005) with the same criteria as for a MC, but it is not usually identifiable as a flux rope by using the MC (Burlaga et al., J. Geophys. Res.86, 6673, 1981) fitting model developed by Lepping, Jones, and Burlaga (Geophys. Res. Lett.95(11), 957, 1990). The average occurrence rate is 9.5 for MCs and 13.6 for MCLs per year for the overall period of interest, and there were
82 MCs and 122 MCLs identified during this period. The characteristics of MCs and MCL structures are as follows: (1) The average
duration, Δt, of MCs is 21.1 h, which is 40% longer than that for MCLs (Δt=15 h); (2) the average
(minimum Bz found in MC/MCL measured in geocentric solar ecliptic coordinates) is −10.2 nT for MCs and −6 nT for MCLs; (3) the average
Dstmin (minimum Dst caused by MCs/MCLs) is −82 nT for MCs and −37 nT for MCLs; (4) the average solar wind velocity is 453 km s−1 for MCs and 413 km s−1 for MCLs; (5) the average thermal speed is 24.6 km s−1 for MCs and 27.7 km s−1 for MCLs; (6) the average magnetic field intensity is 12.7 nT for MCs and 9.8 nT for MCLs; (7) the average solar wind density
is 9.4 cm−3 for MCs and 6.3 cm−3 for MCLs; and (8) a MC is one of the most important interplanetary structures capable of causing severe geomagnetic storms.
The longer duration, more intense magnetic field and higher solar wind speed of MCs, compared to those properties of the MCLs,
are very likely the major reasons for MCs generally causing more severe geomagnetic storms than MCLs. But the fact that a
MC is an important interplanetary structure with respect to geomagnetic storms is not new (e.g., Zhang and Burlaga, J. Geophys. Res.93, 2511, 1988; Bothmer, ESA SP-535, 419, 2003). 相似文献