全文获取类型
收费全文 | 113篇 |
免费 | 6篇 |
国内免费 | 24篇 |
专业分类
测绘学 | 1篇 |
大气科学 | 7篇 |
地球物理 | 29篇 |
地质学 | 90篇 |
海洋学 | 11篇 |
天文学 | 3篇 |
自然地理 | 2篇 |
出版年
2021年 | 1篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 8篇 |
2017年 | 7篇 |
2016年 | 1篇 |
2015年 | 5篇 |
2014年 | 1篇 |
2013年 | 3篇 |
2012年 | 2篇 |
2011年 | 2篇 |
2010年 | 4篇 |
2009年 | 18篇 |
2008年 | 12篇 |
2007年 | 13篇 |
2006年 | 2篇 |
2005年 | 5篇 |
2004年 | 7篇 |
2003年 | 8篇 |
2002年 | 3篇 |
2001年 | 5篇 |
2000年 | 6篇 |
1999年 | 2篇 |
1998年 | 3篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1989年 | 2篇 |
1987年 | 2篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1978年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有143条查询结果,搜索用时 0 毫秒
141.
Petrological evolution of the Tertiary island arc in the Izu-Mariana region has been accompanied by the development of three different volcanic suites: 1) oceanridge basalt now exposed as the metamorphic basement on Yap; 2) island-arc tholeiites of Eocene to early Oligocene age characterized by low contents of incompatible elements at all levels of silica enrichment; and 3) calc-alkalic rocks of late Oligocene to early Miocene age showing higher contents of silica and incompatible elements. All these three suites have primitive, undifferentiated basalts or andesites (boninites) characterized by high Mg/Fe, Cr, and Ni, suggesting that they have been derived from an upper mantle peridotite at relatively high temperatures. The earliest volcanism appears to have occurred at a spreading ridge. Later, as subduction proceeded, the island-arc tholeiite magma may have been produced by the introduction of a smaller amount of water into the locus of fusion from the subducted oceanic crust. An increasingly larger amount of water introduced into the same region could have led to the development of the more siliceous, calc-alkalic magma, as represented typically by the boninite. 相似文献
142.
Mineral inclusions in zircons of para- and orthogneiss from pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project 总被引:48,自引:0,他引:48
Fulai Liu Zhiqin Xu Ikuo Katayama Jingsui Yang Shigenori Maruyama J. G. Liou 《Lithos》2001,59(4):199-215
The pre-pilot drillhole CCSD-PP1, Chinese Continental Scientific Drilling Project (CCSD), with depth of 432 m, is located in the Donghai area in the southwestern Sulu terrane. The core samples are mainly comprised of paragneiss, orthogneiss and ultramafic rock with minor intercalated layers of eclogite and phengite-bearing kyanite quartzite. All analyzed paragneiss and orthogneiss samples were overprinted on amphibolite facies retrograde metamorphism. Coesite and coesite-bearing ultrahigh-pressure (UHP) mineral assemblages were identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from paragneiss, eclogite and phengite-bearing kyanite quartzite samples. In the paragneiss samples, UHP mineral inclusion assemblages mainly consist of Coe+Omp+Grt+Phe, Coe+Jd+Phe+Ap preserved in the mantles (M) and rims (R) of zircons. These UHP mineral inclusion assemblages yield temperatures of 814–852 °C and pressures of ≥28 kbar, presenting the P–T condition of UHP peak metamorphism of these country rocks. According to the mineral inclusions and cathodoluminescence images of zircons, the orthogneisses can be divided into two types: UHP (OG1) and non-UHP (OG2). In OG1 orthogneisses, low-pressure mineral inclusion assemblage, mainly consisting of Qtz+Phe+Ab+Ksp+Ap, were identified in zircon cores (C), while coesite or coesite-bearing UHP mineral inclusions were identified in the mantles (M) and rims (R) of the same zircons. These features suggest that the OG1 orthogneisses, together with the paragneisses, phengite-bearing kyanite quartzite and eclogite experienced widespread UHP metamorphism in the Sulu terrane. However, in the zircons of OG2 orthogneiss samples, no UHP mineral inclusions were found. Inclusions mainly comprised Qtz+Phe+Ap and were identified in cores (C), mantles (M) and rims (R) of OG2 zircons; the cathdoluminescence images of all analyzed zircons showed clear zonings from cores to rims. These features indicate that the OG2 orthogneisses in pre-pilot drillhole CCSD-PP1 did not experience UHP metamorphism. Therefore, we should not rule out the possibility that some orthogneisses in Sulu terrane might represent relatively low-pressure granitic intrusives emplaced after the UHP event. 相似文献
143.
Shigenori Maruyama Ken Kurokawa Toshikazu Ebisuzaki Yusuke Sawaki Konomi Suda M.Santo 《地学前缘(英文版)》2019,10(4):1337-1357
The origin of life on Earth remains enigmatic with diverse models and debates.Here we discuss essential requirements for the first emergence of life on our planet and propose the following nine requirements:(1)an energy source(ionizing radiation and thermal energy);(2)a supply of nutrients(P.K.REE.etc.);(3)a supply of life-constituting major elements;(4)a high concentration of reduced gases such as CH_4,HCN and NH_3;(5)dry-wet cycles to create membranes and polymerize RNA;(6)a non-toxic aqueous environment;(7)Na-poor water;(8)highly diversified environments,and(9)cyclic conditions,such as dayto-night,hot-to-cold etc.Based on these nine requirements,we evaluate previously proposed locations for the origin of Earth's life,including:(1)Darwin's "warm little pond",leading to a "prebiotic soup" for life;(2)panspermia or Neo-panspermia(succession model of panspermia);(3)transportation from/through Mars;(4)a deepsea hydrothermal system;(5)an on-land subduct ion-zone hot spring,and(6)a geyser systems driven by a natural nuclear reactor.We conclude that location(6)is the most ideal candidate for the o rigin point for Earth's life because of its efficiency in continuously supplying both the energy and the necessary materials for life,thereby maintaining the essential "cradle" for its initial development.We also emphasize that falsifiable working hypothesis provides an important tool to evaluate one of the biggest mysteries of the universe-the origin of life. 相似文献