首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   3篇
  国内免费   19篇
测绘学   1篇
大气科学   6篇
地球物理   27篇
地质学   59篇
海洋学   4篇
天文学   5篇
自然地理   2篇
  2021年   2篇
  2019年   2篇
  2018年   7篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   3篇
  2009年   13篇
  2008年   8篇
  2007年   9篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1994年   1篇
  1989年   3篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1972年   2篇
  1970年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有104条查询结果,搜索用时 824 毫秒
41.
土钉技术补强土质古窑受拉破坏裂缝   总被引:1,自引:0,他引:1  
保护土遗址免遭损坏是一个难题。土钉锚杆技术在加固保存石质遗迹方面应用较多,而在土质遗址补强方面的应用则鲜有报道。船迫2号窑为一土质古窑,在移去古窑内部回填土的过程中,最薄弱断面部位出现受拉破坏裂缝。应用有限差分程序FLAC,在稳定性评价的基础上模拟分析了微型土钉补强该受拉破坏裂缝的可行性。参数研究包括土钉长度、倾斜角、间距和孔径等对补强效果的影响。考虑现场施工空间的限制和土遗址保存对外观的要求,提出了合理的补强设计和施工方案。微型土钉技术补强受拉破坏裂缝的成功实施,为土遗址的加固补强提供了典型案例,具有一定的借鉴意义。  相似文献   
42.
The sidewall effects of a wind tunnel on aeolian sand transport were investigated experimentally. A wind tunnel was used to conduct the experiments with a given channel height of 120 cm and varying widths (B) of 40, 60, 80, 100 and 120 cm. Both vertical profiles of wind velocity and sand mass flux were measured at different locations across the test section. The results show that the wind velocity with saltation first increases and then decreases to a minimum, from the sidewall to the central line of the wind tunnel. The discrepancy among wind velocities at different locations of the transverse section decreases with decreasing tunnel width. The wind friction velocity across the wind tunnel floor, with the exception of the region closest to the sidewalls, does not deviate strongly in wide wind tunnels from that along the central line, whereas it does vary in narrow tunnels. The sand mass fluxes, with the exception of some near-bed regions, are larger along the central line of the wind tunnel than they are at the quarter width location from the sidewall. Unlikely previously reported results, the dimensionless sand transport rate, Qg / (ρu3) (where Q is the total sand transport rate, g is the gravitational acceleration constant, ρ is the air density, and u is the wind friction velocity), first decreases and then increases with the dimensionless friction velocity, u / ut (where ut is the threshold friction velocity). The above differences may be attributed to the sidewall effects of the wind tunnel. A dimensionless parameter, FB = u / (gB)1/2, is defined to reflect the sidewall effects on aeolian sand transport. The flows with FB of 0.33 or less may be free from the sidewall effects of the wind tunnel and can ensure accurate saltation tunnel simulation.  相似文献   
43.
http://dx.doi.org/10.1016/j.gsf.2016.10.005   总被引:5,自引:4,他引:1  
The Earth was born as a dry planet without atmosphere and ocean components at 4.56 Ga, with subsequent secondary accretion of bio-elements, such as carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) which peaked at 4.37–4.20 Ga. This two-step formation model of the Earth we refer to as the advent of bio-elements model (ABEL Model) and the event of the advent of bio-elements (water component) as ABEL Bombardment. It is clear that the solid Earth originated from enstatite chondrite-like dry material based on the similarity in oxygen isotopic composition and among other isotopes. On the other hand, Earth's water derives primarily from carbonaceous chondrite material based on the hydrogen isotopic ratio. We present our ABEL model to explain this enigma between solid Earth and water, as well as secondary accretion of oxidizing bio-elements, which became a precursor to initiate metabolism to emerge life on a highly reductive planet. If ABEL Bombardment had not occurred, life never would have emerged on the Earth. Therefore, ABEL Bombardment is one of the most important events for this planet to evolve into a habitable planet. The chronology of ABEL Bombardment is informed through previous researches of the late heavy bombardment and the late veneer model. ABEL Bombardment is considered to have occurred during 4.37–4.20 Ga, which is the concept to redefine the standard late heavy bombardment and the late veneer models. Also, ABEL Bombardment is the trigger of the transition from stagnant lid tectonics to plate tectonics on this planet because of the injection of volatiles into the initial dry Earth.  相似文献   
44.
Characteristics of drift and beaching of floating marine litter in the Japan Sea are examined numerically using the reanalysis data of the Japan Sea Forecasting System of Kyushu University. The residence time of model marine litter deployed uniformly over the surface of the Japan Sea strongly depends on the buoyancy ratio. However, almost all litter beaches or flows out through straits within 3 years. Experiments with inputs of litter imposed at large cities and the Tsushima Straits as well as river basins of the Japan Sea exhibit a good agreement with beach surveys with regard to country ratios of beached litter along the Japanese coast in cases of lighters. In a case of lighter, almost all lighters originating from Japan beach along the Japanese coast, while almost all lighters originating from a country surrounding the Japan Sea except Japan beach along the coast of that country and the Japanese coast.  相似文献   
45.
Southern India occupies a central position in the Late Neoproterozoic–Cambrian Gondwana supercontinent assembly. The Proterozoic mosaic of southern India comprises a collage of crustal blocks dissected by Late Neoproterozoic–Cambrian crust-scale shear/suture zones. Among these, the Palghat–Cauvery Suture Zone (PCSZ) has been identified as the trace of the Cambrian suture representing Mozambique Ocean closure during the final phase of amalgamation of the Gondwana supercontinent. Here we propose a model involving Pacific-type orogeny to explain the Neoproterozoic evolution of southern India and its final amalgamation within the Gondwana assembly. Our model envisages an early rifting stage which gave birth to the Mozambique Ocean, followed by the initiation of southward subduction of the oceanic plate beneath a thick tectosphere-bearing Archean Dharwar Craton. Slices of the ocean floor carrying dunite–pyroxenite–gabbro sequence intruded by mafic dykes representing a probable ophiolite suite and invaded by plagiogranite are exposed at Manamedu along the southern part the PCSZ. Evidence for the southward subduction and subsequent northward extrusion are preserved in the PCSZ where the orogenic core carries high-pressure and ultrahigh-temperature metamorphic assemblages with ages corresponding to the Cambrian collisional orogeny. Typical eclogites facies rocks with garnet + omphacite + quartz and diagnostic ultrahigh-temperature assemblages with sapphirine + quartz, spinel + quartz and high alumina orthopyroxene + sillimanite + quartz indicate extreme metamorphism during the subduction–collision process. Eclogites and UHT granulites in the orogenic core define PT maxima of 1000 °C and up to 20 kbar. The close association of eclogites with ultramafic rocks having abyssal signatures together with linear belts of iron formation and metachert in several localities within the PCSZ probably represents subduction–accretion setting. Fragments of the mantle wedge were brought up through extrusion tectonics within the orogenic core, which now occur as suprasubduction zone/arc assemblages including chromitites, highly depleted dunites, and pyroxene bearing ultramafic assemblages around Salem. Extensive CO2 metasomatism of the ultramafic units generated magnesite deposits such as those around Salem. High temperature ocean floor hydrothermal alteration is also indicated by the occurrence of diopsidite dykes with calcite veining. Thermal metamorphism from the top resulted in the dehydration of the passive margin sediments trapped beneath the orogenic core, releasing copious hydrous fluids which moved upward and caused widespread hydration, as commonly preserved in the Barrovian amphibolite facies units in the PCSZ. The crustal flower structure mapped from PCSZ supports the extrusion model, and the large scale north verging thrusts towards the north of the orogenic core may represent a fold-thrust belt. Towards the south of the PCSZ is the Madurai Block where evidence for extensive magmatism occurs, represented by a number of granitic plutons and igneous charnockite massifs of possible tonalite–trondhjemite–granodiorite (TTG) setting, with ages ranging from ca. 750–560 Ma suggesting a long-lived Neoproterozoic magmatic arc within a > 200 km wide belt. All these magmatic units were subsequently metamorphosed, when the Pacific-type orogeny switched over to collision-type in the Cambrian during the final phase of assembly of the Gondwana supercontinent. One of the most notable aspects is the occurrence of arc magmatic rocks together with high P/T rocks, representing the deeply eroded zone of subduction. The juxtaposition of these contrasting rock units may suggest the root of an evolved Andean-type margin, as in many arc environments the roots of the arc comprise ultramafic/mafic cumulates and the felsic rocks represent the core of the arc. The final phase of the orogeny witnessed the closure of an extensive ocean — the Mozambique Ocean — and the collisional assembly of continental fragments within the Gondwana supercontinent amalgam. The tectonic history of southern India represents a progressive sequence from Pacific-type to collision-type orogeny which finally gave rise to a Himalayan-type Cambrian orogen with characteristic magmatic, metasomatic and metamorphic factories operating in subduction–collision setting.  相似文献   
46.
Boundary-Layer Meteorology - Known as the heat-mitigation effect, irrigated rice-paddy fields distribute a large fraction of their received energy to the latent heat during the growing season. The...  相似文献   
47.
Almost three years of continuous measurements taken between January 2001 and May 2003 at the Gaize (or Gerze) automatic weather station (32.30 °N, 84.06 °E, 4420 m), a cold semi-desert site on the western Tibetan Plateau, have been used to study seasonal and annual variations of surface albedo and soil thermal parameters, such as thermal conductivity, thermal capacity and thermal diffusivity, and their relationship to soil moisture content. Most of these parameters undergo dramatic seasonal and annual variations. Surface albedo decreases with increasing soil moisture content, showing the typical exponential relation between surface albedo and soil moisture. Soil thermal conductivity increases as a power function of soil moisture content. The diffusivity first increases with increasing soil moisture, reaching its maximum at about 0.25 (volume per volume), then slowly decreases. Soil thermal capacity is rather stable for a wide range of soil moisture content.  相似文献   
48.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   
49.
The linear and non-linear responses of surface soil layers have been predicted through the simultaneous simulation test against the observed ground motions at the six sites in Kobe City during the 1995 Hyogo-ken Nanbu earthquake. The total stress analysis method and the effective stress analysis method have been applied for the rough and detailed verification of the predicted non-linear dynamic behavior at the PIS and RKI sites including the liquefaction phenomenon. The shear strain distribution along depth, the ratio of excess pore water pressure to initial effective stress, the liquefaction strength parameters to initial effective stress, and the stress–strain curve during the earthquake at the PIS site have been investigated when the predicted ground motion could simulate successfully the observed acceleration time histories and response spectra in the non-linear range.  相似文献   
50.
The West Pacific Seamount Province (WPSP) represents a series of short-lived Cretaceous hotspot tracks. However, no intraplate volcanoes in advance of petit-spot volcanism erupted near a trench have been identified after the formation of the WPSP on the western Pacific Plate. This study reports new ages for Paleogene volcanic edifices within the northern WPSP, specifically the Ogasawara Plateau and related ridges, and Minamitorishima Island. These Paleogene ages are the first reported for basaltic rocks on western Pacific seamounts, in an area that has previously only yielded Cretaceous ages. The newly found Paleogene volcanisms overprint the Early–middle Cretaceous volcanic edifices, because the seamount or paleo-island material-covered reefal limestone caps on these edifices are uniformly older than the Paleogene volcanism identified in this study. This study outlines several possible causative factors for the Paleogene volcanism overprinting onto existing Cretaceous seamounts, including volcanism related to lithospheric stress, or a younger hotspot track within the northern part of the WPSP that records magmatism from ~60 Ma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号