首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   3篇
  国内免费   3篇
测绘学   10篇
大气科学   8篇
地球物理   21篇
地质学   47篇
海洋学   8篇
天文学   6篇
自然地理   4篇
  2022年   1篇
  2021年   6篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
91.
Fluoride (F?) is essential for normal bone growth, but higher concentration in the drinking water causes health problems which are reported in many states of India. Andhra Pradesh is one of the states which suffer from excess fluoride in groundwater particularly in the hard rock terrain. In this context, a study was conducted in Andhra Pradesh based on chemical analysis of water samples from hydrograph net work stations (dug wells) and exploratory bore wells. The concentration of fluoride in groundwaters ranges from traces to 9.75 mg/l. The occurrence of fluoride is mostly sporadic, uneven and varies with depth. The highly affected districts include Nalgonda and Warangal in Telangana region, Prakasam in coastal region, Anantapur and Kurnool in Rayalaseema region. In certain areas of Nalgonda district, 85% of wells have fluoride more than permissible limit (> 1.5 mg/l) for drinking water. High F? is present in all the geological formations, predominantly in granitic aquifers, compared to the other formations. The average value of fluoride is high in the deeper zone (1.10 mg/L), compared to the shallow zone (0.69 mg/L). The fluoride-rich minerals present are the main sources for fluoride concentrations in groundwater. Residence time, evapotranspiration and weathering processes are some of the other supplementary factors for high fluoride concentrations in groundwater. Long-term data of hydrograph net work stations (dug wells) reveal that fluoride concentrations do not show any marked change of trend with respect to time. The concentration of fluoride is found to increase with increase of Na+and HCO 3 ? , and decrease with increase of Ca2+. Sodium bicarbonate waters are more effective in releasing fluoride from minerals into groundwater. High fluoride waters are of Na+ type. The paper presents a brief account of the study and its results.  相似文献   
92.
Journal of Atmospheric Chemistry - Black carbon (BC) along with PM2.5 (fine particular matters) plays an important role in the assessment health effect of human beings. Winter season campaign...  相似文献   
93.
The present investigation attempts to quantify the temporal variation of Solar Flare Index(SFI)with other activity indices during solar cycles 21-24 by using different techniques such as linear regression,correlation,cross-correlation with phase lag-lead,etc.Different Solar Activity Indices(SAI)considered in this present study are Sunspot Number(SSN),10.7 cm Solar Radio Flux(F10.7),Coronal Index(CI)and MgⅡCore-to-Wing Ratio(MgⅡ).The maximum cycle amplitude of SFI and considered SAI has a decreasing trend from solar cycle 22,and cycle 24 is the weakest solar cycle among all other cycles.The SFI with SSN,F10.7,CI and MgⅡshows hysteresis during all cycles except for solar cycle 22 where both paths for ascending and descending phases are intercepting each other,thereby representing a phase reversal.A positive hysteresis circulation exists between SFI and considered SAI during solar cycles 22 and 23,whereas a negative circulation exists in cycles 21 and 24.SFI has a high positive correlation with coefficient values of 0.92,0.94,0.84 and 0.81 for SSN,F10.7,CI and MgⅡrespectively.According to crosscorrelation analysis,SFI has a phase lag with considered SAI during an odd-number solar cycle(solar cycles21 and 23)but no phase lag/lead during an even-numbered solar cycle(solar cycles 22 and 24).However,the entire smoothed monthly average SFI data indicate an in-phase relationship with SSN,F10.7 and MgⅡ,and a one-month phase lag with CI.The presence of those above characteristics strongly confirms the outcomes of different research work with various solar indices and the highest correlation exists between SFI and SSN as well as F10.7 which establishes that SFI may be considered as one of the prime activity indices to interpret the characteristics of the Sun’s active region as well as for more accurate short-range or long-range forecasting of solar events.  相似文献   
94.
We present the seismic source zoning of the tectonically active Greater Kashmir territory of the Northwestern Himalaya and seismicity analysis (Gutenberg-Richter parameters) and maximum credible earthquake (m max) estimation of each zone. The earthquake catalogue used in the analysis is an extensive one compiled from various sources which spans from 1907 to 2012. Five seismogenic zones were delineated, viz. Hazara-Kashmir Syntaxis, Karakorum Seismic Zone, Kohistan Seismic Zone, Nanga Parbat Syntaxis, and SE-Kashmir Seismic Zone. Then, the seismicity analysis and maximum credible earthquake estimation were carried out for each zone. The low b value (<1.0) indicates a higher stress regime in all the zones except Nanga Parbat Syntaxis Seismic Zone and SE-Kashmir Seismic Zone. The m max was estimated following three different methodologies, the fault parameter approach, convergence rates using geodetic measurements, and the probabilistic approach using the earthquake catalogue and is estimated to be M w 7.7, M w 8.5, and M w 8.1, respectively. The maximum credible earthquake (m max) estimated for each zone shows that Hazara Kashmir Syntaxis Seismic Zone has the highest m max of M w 8.1 (±0.36), which is espoused by the historical 1555 Kashmir earthquake of M w 7.6 as well as the recent 8 October 2005 Kashmir earthquake of M w 7.6. The variation in the estimated m max by the above discussed methodologies is obvious, as the definition and interpretation of the m max change with the method. Interestingly, historical archives (~900 years) do not speak of a great earthquake in this region, which is attributed to the complex and unique tectonic and geologic setup of the Kashmir Himalaya. The convergence is this part of the Himalaya is distributed not only along the main boundary faults but also along the various active out-of-sequence faults as compared to the Central Himalaya, where it is mainly adjusted along the main boundary fault.  相似文献   
95.
Thirty-three bulk ferromanganese nodules from the sediment–water interface of siliceous sediment domain from the Central Indian Ocean Basin were analyzed for 50 elements including 6 new (Be, As, Se, Sn, Sb, and Bi) using inductively coupled plasma–mass spectrometer. The Mn/Fe ratio and triangular plot (Fe-Mn-{Cu+Ni+Co?×?10}) suggest that ferromanganese nodules are of hydrogenetic, early diagenetic, and diagenetic origin. In the ferromanganese nodules, Mo, Sb, Bi, and As are highly enriched ~320, 160, 90, and 50 times compared with upper continental crust, respectively. A majority of the elements such as Be, Sc, Ti, V, Co, As, Se, Sr, Y, Zr, Nb, Sn, rare earth elements (REEs), Pb, Bi, P, Th, U, Hf, and Ta are associated with Fe, whereas, Cu, Ni, Zn, Mo, Li, Ga, Sb, Mg, and Cs are associated with Mn in the ferromanganese nodules. Redox proxies such as U/Th (0.14) and Mo/Mn (0.0019) ratio in the ferromanganese nodules suggest their formation under oxic conditions.  相似文献   
96.
Pumice are explosive volcanic product, occur as uncoated or coated with ferromanganese (Fe-Mn) oxide and resides in association with ferromanganese nodules on the seabed in Central Indian Ocean Basin (CIOB). The older Fe-Mn oxide coated and younger uncoated pumice clasts were leached with 6N HCl to remove Fe-Mn oxide coatings as well as the calcium carbonate present within the vesicles. The main objective of the present study is to understand the origin of these pumice by utilizing their chemical composition. Both coated and uncoated pumice samples are rhyoliteand medium K calc-alkaline series. Major, trace, rare earth elements (∑REE) concentration and chondrite-normalized REE patterns of both coated and uncoated pumice are nearly similar to each other suggesting a same source. Tectonomagmatic discrimination diagrams (Nb vs Y: Yb vs. Ta), triangular plot (TiO2-Zr-Y) and High Field Strength Element ratios (La/Ta- 25; Ta/Hf- 0.2; Nb/Ta- 9; Zr/Nb- 22 and Ba/Ta-1084) indicate volcanic arc origin. These were probably sourced from the nearest Indonesian volcanic arc and drifted to the CIOB by currents.  相似文献   
97.
98.
High Mg-Al spinel-sapphirine granulites, orthopyroxene-bearing quartzofeldspathic granulites, two pyroxene-bearing mafic granulites and metapelitic gneisses are exposed around Paderu, Eastern Ghats Belt. Geothermobarometry in orthopyroxene-bearing quartzofeldspathic granulites and mafic granulites indicate near isobaric cooling through 90°C from ca. 720°C to 630°C, at 8.0 kbar. However, signatures of ultrahigh temperature metamorphism are recorded from the mineralogy and reaction textures in the high Mg-Al granulites. Mineral reactions deduced in this work, when combined with others described by Lalet al (1987) from the same area and plotted in an appropriate petrogenetic grid in the system FMASO indicate an ACW path comprising a high dT/dP prograde arm reaching Pmax − Tmax = 9.5 kbar, ∼ 1000°C, followed by near-isobaric cooling down to 9 kbar, 900°C and subsequent decompressive reworking.  相似文献   
99.
The relationships between the global general circulation and the Indian monsoon during active and break phases are investigated with the help of FGGE IIIb data.It was found that the ultralong wave component positive and negative height anomalies over Tibet are associated with active and break monsoon phases respectively. This ultralong wave component has significant effect even upto 22oN over the Indian region which is the monsoon trough region. During a monsoon break, the general circulation was found to be more turbulent in the sense that more waves become energised.It was observed that during a break, blocking prevails over the Siberian region and cold air advection takes place toward Indian region from Siberian region depressing the temperatures over the Indian region by about 1oC. During the break, the Indian region gets connected with higher latitudes by the south winds blowing from polar Soviet re-gions to the Indian region. From active to break phase the zonal component weakens by about 25% from Indian ocean area right upto Alaskan region, along the east coast of Asia.  相似文献   
100.
In this paper, we present a seismic hazard scenario for the Garhwal region of the north-western Himalayan range, in terms of the horizontal Peak Ground Acceleration. The scenario earthquake of moment magnitude M w 8.5 has a 10% exceedance probability over the next 50 years. These estimates, the first for the region, were calculated through a stepwise process based on:
  • An estimation of the Maximum Credible Earthquake from the seismicity of the region and Global Seismic Hazard Assessment Program considerations, and
  • four seismotectonic parameters abstracted from near field weak-motion data recorded at five stations installed in Chamoli District of the Garhwal region in the aftermath of the 1999 Chamoli earthquake. The latter include
  • The frequency dependent power law for the shear wave quality factor, Q S
  • the site amplification at each station using horizontal-to-vertical-spectral ratio and generalized inversion technique
  • source parameters of various events recorded by the array and application of the resulting relations between the scalar seismic moment M 0 (dyne-cm) and moment magnitude M w and the corner frequency, ? c (Hz) and moment magnitude M w to simulate spectral acceleration due to higher magnitude events corresponding to the estimated Maximum Credible Earthquake, and
  • regional and site specific local spectral attenuation relations at different geometrically central frequencies in the low, moderate and high frequency bands.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号