首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
  国内免费   3篇
测绘学   10篇
大气科学   8篇
地球物理   21篇
地质学   47篇
海洋学   8篇
天文学   5篇
自然地理   4篇
  2022年   1篇
  2021年   5篇
  2019年   3篇
  2018年   8篇
  2017年   7篇
  2016年   9篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   9篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有103条查询结果,搜索用时 46 毫秒
41.
Summary Some propagation characteristics of low frequency surface waves have been studied at the different soil formations. The field records were obtained by operating a mechanical-optical seismograph in the vicinity of small explosions. The records have been analysed for both amplitude and spectral attenuation studies. The existence of power laws are suggested in general.  相似文献   
42.
A comprehensive analytical as well as numerical treatment of seismological, geological, geomorphological and geotechnical concepts has been implemented through microzonation projects in the northeast Indian provinces of Sikkim Himalaya and Guwahati city, representing cases of contrasting geological backgrounds — a hilly terrain and a predominantly alluvial basin respectively. The estimated maximum earthquakes in the underlying seismic source zones, demarcated in the broad northeast Indian region, implicates scenario earthquakes of M W 8.3 and 8.7 to the respective study regions for deterministic seismic hazard assessments. The microzonation approach as undertaken in the present analyses involves multi-criteria seismic hazard evaluation through thematic integration of contributing factors. The geomorphological themes for Sikkim Himalaya include surface geology, soil cover, slope, rock outcrop and landslide integrated to achieve geological hazard distribution. Seismological themes, namely surface consistent peak ground acceleration and predominant frequency were, thereafter, overlaid on and added with the geological hazard distribution to obtain the seismic hazard microzonation map of the Sikkim Himalaya. On the other hand, the microzonation study of Guwahati city accounts for eight themes — geological and geomorphological, basement or bedrock, landuse, landslide, factor of safety for soil stability, shear wave velocity, predominant frequency, and surface consistent peak ground acceleration. The five broad qualitative hazard classifications — ‘low’, ‘moderate’, ‘high’, ‘moderate high’ and ‘very high’ could be applied in both the cases, albeit with different implications to peak ground acceleration variations. These developed hazard maps offer better representation of the local specific seismic hazard variation in the terrain.  相似文献   
43.
Earthquake hazard zonation of Sikkim Himalaya using a GIS platform   总被引:2,自引:1,他引:1  
An earthquake hazard zonation map of Sikkim Himalaya is prepared using eight thematic layers namely Geology (GE), Soil Site Class (SO), Slope (SL), Landslide (LS), Rock Outcrop (RO), Frequency–Wavenumber (F–K) simulated Peak Ground Acceleration (PGA), Predominant Frequency (PF), and Site Response (SR) at predominant frequencies using Geographic Information System (GIS). This necessitates a large scale seismicity analysis for seismic source zone classification and estimation of maximum earthquake magnitude or maximum credible earthquake to be used as a scenario earthquake for a deterministic or quasi-probabilistic seismic scenario generation. The International Seismological Center (ISC) and Global Centroid Moment Tensor (GCMT) catalogues have been used in the present analysis. Combining b-value, fractal correlation dimension (Dc) of the epicenters and the underlying tectonic framework, four seismic source zones are classified in the northeast Indian region. Maximum Earthquake of M W 8.3 is estimated for the Eastern Himalayan Zone (EHZ) and is used to generate the seismic scenario of the region. The Geohazard map is obtained through the integration of the geological and geomorphological themes namely GE, SO, SL, LS, and RO following a pair-wise comparison in an Analytical Hierarchy Process (AHP). Detail analysis of SR at all the recording stations by receiver function technique is performed using 80 significant events recorded by the Sikkim Strong Motion Array (SSMA). The ground motion synthesis is performed using F–K integration and the corresponding PGA has been estimated using random vibration theory (RVT). Testing for earthquakes of magnitude greater than M W 5, a few cases presented here, establishes the efficacy and robustness of the F–K simulation algorithm. The geohazard coverage is overlaid and sequentially integrated with PGA, PF, and SR vector layers, in order to evolve the ultimate earthquake hazard microzonation coverage of the territory. Earthquake Hazard Index (EHI) quantitatively classifies the terrain into six hazard levels, while five classes could be identified following the Bureau of Indian Standards (BIS) PGA nomenclature for the seismic zonation of India. EHI is found to vary between 0.15 to 0.83 quantitatively classifying the terrain into six hazard levels as “Low” corresponding to BIS Zone II, “Moderate” corresponding to BIS Zone III, “Moderately High” belonging to BIS Zone IV, “High” corresponding to BIS Zone V(A), “Very High” and “Severe” with new BIS zones to Zone V(B) and V(C) respectively.  相似文献   
44.
Recent seismicity in the northeast India and its adjoining region exhibits different earthquake mechanisms – predominantly thrust faulting on the eastern boundary, normal faulting in the upper Himalaya, and strike slip in the remaining areas. A homogenized catalogue in moment magnitude, M W, covering a period from 1906 to 2006 is derived from International Seismological Center (ISC) catalogue, and Global Centroid Moment Tensor (GCMT) database. Owing to significant and stable earthquake recordings as seen from 1964 onwards, the seismicity in the region is analyzed for the period with spatial distribution of magnitude of completeness m t, b value, a value, and correlation fractal dimension D C. The estimated value of m t is found to vary between 4.0 and 4.8. The a value is seen to vary from 4.47 to 8.59 while b value ranges from 0.61 to 1.36. Thrust zones are seen to exhibit predominantly lower b value distribution while strike-slip and normal faulting regimes are associated with moderate to higher b value distribution. D C is found to vary from 0.70 to 1.66. Although the correlation between spatial distribution of b value and D C is seen predominantly negative, positive correlations can also be observed in some parts of this territory. A major observation is the strikingly negative correlation with low b value in the eastern boundary thrust region implying a possible case of extending asperity. Incidentally, application of box counting method on fault segments of the study region indicates comparatively higher fractal dimension, D, suggesting an inclination towards a planar geometrical coverage in the 2D spatial extent. Finally, four broad seismic source zones are demarcated based on the estimated spatial seismicity patterns in collaboration with the underlying active fault networks. The present work appraises the seismicity scenario in fulfillment of a basic groundwork for seismic hazard assessment in this earthquake province of the country.  相似文献   
45.
This study presents copula‐based multivariate probabilistic approach to model severity–duration–frequency (S‐D‐F) relationship of drought events in western Rajasthan, India. Drought occurrences are analysed using standardized precipitation index computed on monthly mean areal precipitation, aggregated at a time scale of 6 months. After testing with a series of probability density functions, the drought variable severity is found to be better represented with log‐normal distribution, whereas duration is well fitted with exponential distribution. Four different classes of bivariate copulas – Archimedean, extreme value, Plackett, and elliptical families are evaluated for modelling joint distribution of drought characteristics. It is observed that the extreme value copula – Gumbel–Hougaard copula – performed better as compared with other classes of copulas, based on results of various statistical tests and upper tail dependence coefficient. The joint distribution obtained from best performing copula is then employed to determine conditional return period and to derive drought severity‐duration‐frequency (S‐D‐F) curves for the study region. The results of the study suggests that the copula method can be used effectively to derive the drought S‐D‐F curves, which can be helpful in planning and adopting suitable drought mitigation strategies in drought‐prone areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
46.
A new geochemical record from the paaleolake Santiaguillo documents the hydrological variability of sub‐tropical northern Mexico over the last 14 cal. ka. Summer‐season runoff, lake water salinity and deposition of sediments by aeolian activity were reconstructed from concentrations of K, Ca and Zr/K in bulk sediments. More‐than‐average runoff during c. 12.39.3 cal. ka BP represented an interval of enhanced summer precipitation. Arid intervals of c. 1412.3 cal. ka BP and c. 6–4.3 cal. ka BP were characterized by average and more‐than‐average aeolian activity. Comparison with proxy records of summer as well as winter precipitation from tropical and sub‐tropical North America and sea surface temperatures from the Atlantic and Pacific provides insight into the source of moisture and possible forcing. The wet Pleistocene?Holocene transition and early Holocene was contemporary with warmer conditions in the Gulf of California. We suggest that the Atlantic had minimal influence on the summer precipitation of the western part of sub‐tropical northern Mexico and that the source of moisture was dominantly Pacific.  相似文献   
47.
In the present paper we have analyzed the daily Forbush decrease indices from January 1, 1967 to December 31, 2003. First filtering the time series by Simple Exponential Smoothing, we have applied Scargle Method of Periodogram on the processed time series in order to search for its time variation. Study exhibits periodicities around 174, 245, 261, 321, 452, 510, 571, 584, 662, 703, 735, 741, 767, 774, 820, 970, 1062, 1082, 1489, 1715, 2317, 2577, 2768, 3241 and 10630 days with confidence levels higher than 90%. Some of these periods are significantly similar to the observed periodicities of other solar activities, like solar filament activity, solar electron flare occurrence, solar-flare rate, solar proton events, solar neutrino flux, solar irradiance, cosmic ray intensity and flare, spectrum of the sunspot, solar wind, southern coronal hole area and solar cycle, which may suggest that the Forbush decrease behaves similarly to these solar activities and these activities may have a common origin.  相似文献   
48.
Evaluation of flow and transport processes in a watershed‐scale requires that the watershed be divided into homogenous spatial units referred to as hydrologically similar units (HSUs). Although a few discretization schemes are already in use, a universally acceptable method of obtaining HSUs is yet to emerge. In this study, we developed a fuzzy inference system (FIS) to classify the saturated hydraulic conductivity (Ks) and two water‐retention parameters α and n into fuzzy logic‐based soil hydrologic classes (FSHCs). Analysis of these classes showed that soil properties within an FSHC have less variability and those between two FSHCs have large variability. This result suggested that soils belonging to a specific FSHC may be more similar than those across different FSHCs and may be grouped together to represent an HSU. Soils within a specific hydrologic class were aggregated to delineate HSUs within the watershed. For the Dengei Pahad micro‐watershed (DPW), this approach showed five distinct regions representing a discretized zone having similar soil hydraulic properties. Application of this approach on a larger international database of soil hydraulic properties revealed that the developed hydrologic classes are quite comparable across different databases. The delineated HSUs based on these FSHCs were also better than the soil series map of the watershed in maintaining the soil heterogeneity of the watershed. Moreover, this new discretization scheme using the SWAT modelling environment showed better performance than the soil series‐based discretization approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
49.
50.
Geomagnetism and Aeronomy - The Mg II core-to-wing ratio (c/w ratio) data is used to derive the solar extreme UV emission which brings a vital role in the creation of the Earth’s ionosphere...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号