首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  国内免费   1篇
测绘学   2篇
大气科学   12篇
地球物理   8篇
地质学   13篇
海洋学   2篇
天文学   12篇
综合类   2篇
自然地理   2篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2015年   2篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有53条查询结果,搜索用时 312 毫秒
51.
Abstract

This paper presents the results of a laboratory investigation undertaken to study the nature of two submarine carbonate soils from Bombay High off the west coast of India, as well as to study the shear and plasticity behavior of their sand and silt‐clay fractions, respectively. Scanning electron micrographs reveal that the carbonate content in both soils is comprised primarily of nonskeletal particles of various types. X‐ray diffraction and infrared absorption analyses indicate that in one soil the carbonate fraction consists of calcite and aragonite minerals, whereas in the other soil dolomite is also present. The non‐carbonate fraction of both soils is comprised primarily of quartz and feldspar, and also some clay minerals. The nature of the carbonate fraction of the two soils indicates that they were formed by different depositional processes.

During drained triaxial shear the nonskeletal sand grains of both soils exhibit a lower degree of crushing when compared with that of the skeletal carbonate sands, and thus appear to be stronger foundation material.

Although the carbonate contents of the silt‐clay fractions of the two soils are similar, they exhibit markedly different plasticity characteristics . This is probably because of the microlevel cementation produced by carbonate material in one soil.

This study leads one to the conclusion that carbonate content alone should not be treated as a parameter which controls the engineering behavior of submarine soils; the nature and form of carbonate material must also be identified.  相似文献   
52.
Landslides are very common in high-altitude Himalayan terrains. Major roads in the Himalayas are frequently blocked due to heavy landslides and remain closed for long periods of time. Permanent mitigatory solutions to these landslides are required to keep the highways open. Lanta Khola, located 71.2 km north of Gangtok (capital of the Indian state of Sikkim), is one of the oldest landslides on the North Sikkim Highway and is active since 1975. The rock types on either side of the landslide are different (augen gneiss in the east and metapelitic schist in the west), and it is believed that the Main Central Thrust passes through the slide zone. Since the slide is invariably activated in the aftermath of heavy rainfall, it is important to identify the subsurface structures that channel water below the landslide surface in order to understand the triggers of slide activity. This can only be accomplished by geophysical survey; however, an appropriate geophysical technique that can be applied in such terrains must be identified. Very low-frequency (VLF) electromagnetic survey was performed over the Lanta Khola landside in order to delineate subsurface structures. Although a very limited number of VLF transmitters are available worldwide, it was possible to pick up VLF signals from a number of VLF stations even in this high-altitude mountainous terrain. VLF measurements along five profiles perpendicular to the geological strike were recorded, and a high conducting zone was delineated from the VLF observations. This conducting zone correlates with the low resistive zone identified from gradient resistivity profiling. The anomalies confirm that there is a water-saturated zone (soggy zone) even in the subsurface of the slide parallel to the geological gneiss–schist contact within the Lanta Khola slide. This indicates that the conductive feature correlates with a weak water-saturated debris layer that lies along the slide and is parallel to the geological contact. Resistive structures on either side of the landslide zone can thus be correlated with the stable ground. It is necessary to drain out water from the soggy zone to minimize slide activity since this zone appears to penetrate into the body of the slide.  相似文献   
53.
We have examined the potential of using a closed-path sensor to accurately measure eddy fluxes of CO2. Five inlet tubeflow configurations were employed in the experimental setup. The fluxes of CO2 were compared against those measured with an open-path sensor. Sampling air through an intake tube causes a loss of flux, due to the attenuation of CO2 density fluctuations. Adjustments need to be made to correct for this loss and to account for density effects due to the simultaneous transfer of heat and water vapor. Theory quantifying these effects is discussed.The raw CO2 flux measured with the closed-path sensor was smaller than that measured with the open-path sensor by about 15% (on average) for the turbulent tubeflow configurations with a short (3 m) intake tube, by 31% for turbulent tubeflow with a longer (6 m) intake tube and by 24% for laminar tubeflow. The difference was, in part, caused by tube attenuation of the CO2 density fluctuations and inadequate sensor time response. The elimination of the flux adjustment for the simultaneous transfer of sensible heat (i.e., the attenuation of ambient temperature fluctuations in the intake tube) generally accounted for the rest of this difference.The raw flux measured with the closed-path sensor was corrected for frequency response and density effects. Except in the case of laminar tubeflow, the corrected closed-path flux agreed consistently with the corrected open-path flux within a few percent (<5%). These results suggest that closed-path sensors, with appropriate corrections, can be used to measure CO2 flux accurately. Recommendations are included on selecting an optimum flow configuration to minimize the effect of sampling air through a tube.Published as Paper No. 9938, Journal Series, Nebraska Agricultural Research Division.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号