首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
大气科学   2篇
地球物理   11篇
地质学   24篇
海洋学   5篇
天文学   6篇
综合类   2篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2002年   3篇
  1997年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
51.
This paper characterizes potential hydrological impact of future climate in the Bagmati River Basin, Nepal. For this research, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). It is predicted that temperature may rise maximally during the summer rather than winter for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios. Precipitation may increase during the wet season, but it may decrease during other seasons for A2 scenario. For B2 scenario, precipitation may increase during all the seasons. Under the A2 scenario, premonsoon water availability may decrease more in the upper than the middle basin. During monsoons, both upper and middle basins show increased water availability. During the postmonsoon season, water availability may decrease in the upper part, while the middle part shows a mixed trend. Under the B2 scenario, water availability is expected to increase in the entire basin. The analysis of the projected hydrologic impact of climate change is expected to support informed decision-making for sustainable water management.  相似文献   
52.
Urban Heat Island (UHI) refers to a phenomenon whereby urban areas experience higher temperatures compared to the surrounding areas. Remote sensing-based Land Surface Temperature (LST) measurements can be utilized to measure UHI. This study emphasized on geostatistical remote sensing-based hot spot analysis ( G i * ) of UHI in Dhaka, Bangladesh as a way of examining the influences of Land Use Land Cover (LULC) on UHI from 1991 to 2015. Landsat 5 and 7 satellite-based remote sensing indices were used to explore LULC, UHI and environmental footprints during the study period. The Urban Compactness Ratio (CoR) was used to calculate the urban form and augmented characteristics. The Surface Urban Heat Island (SUHI) intensity (ΔT) was also used to explore the effects of UHI on the surrounding marginal area. Based on our investigations into LULC, we discovered that around 71.34 per cent of water bodies and 71.82 percent of vegetation cover decreased from 1991 to 2015 in Dhaka city. Contrastingly, according to CoR readings, 174.13 km2 of urban areas expanded by 249.77 per cent. Our hot spot analysis also revealed that there was a 93.73 per cent increase in hot concentration zones. Furthermore, the average temperature of the study area had increased by 3.26°C. We hope that the methods and results of this study can contribute to further research on urban climate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号