首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   2篇
大气科学   2篇
地球物理   11篇
地质学   24篇
海洋学   5篇
天文学   6篇
综合类   2篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   6篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2002年   3篇
  1997年   1篇
排序方式: 共有52条查询结果,搜索用时 31 毫秒
11.
Résumé

La Birket Karoun a été étudiée d’un point de vue biogéologique sur une période de 12 mois. Les données ainsi obtenues, ajoutées à celles de la littérature disponible, permettent de présenter les caractéristiques biogéologiques essentielles de ce bassin original.

Le lac n’est alimenté actuellement que par des eaux continentales issues du système nilotique ce qui entraîne des propriétés hydrochimiques assez différentes des corps d’eau paraliques influencés par la mer. Cependant, les caractéristiques hydrologiques, biologiques et sédimen-taires de la Birket Karoun la classent parmi les écosystèmes de type lagunaire. Il est même possible d’y reconnaître une organisation biogéologique zonale très semblable à celle des lagunes, la partie la plus « marine » (ou la moins confinée) se situant à l’opposé de la zone des apports d’eau douce. Une connexion entre le lac et la mer, actuelle ou passée, étant à peu près exclues, il faut admettre que les eaux continentales concentrées peuvent présenter, dans certains cas, des caractéristiques chimiques et biochimiques presque marines vis-à-vis des êtres vivants.

Dans cette optique, la Birket Karoun apparaît comme un modèle actuel susceptible de fournir une alternative à l’hypothèse d’une « Mer Saharienne » pour rendre compte de l’existence des lacs sahariens pleistocènes à faunes fossiles lagunaires.  相似文献   
12.
Exceptionally high ground motions (horizontal peak ground acceleration (PGA) of 1.82g) were recorded at the Tarzana Station during the main shock of the 1994 Northridge earthquake (moment magnitude 6.7 at an epicentral distance of 6 km). At the time of the main shock, the instrument was located near the edge of a 21 m-high ridge with side slopes ranging from 3H:1V to 15H:1V. The ridge is underlain by shallow fill and soft rocks of Medelo Formation.

The objectives of this study were to (1) identify the relative contributions of various factors such as local geology, topography, source mechanism, and travel path on the large ground motions recorded at Tarzana Station and (2) develop an analytical model that could adequately predict observed ground motions at the Tarzana site during the Northridge earthquake and at similar sites during future earthquakes. This study is an integral part of a series of inter-related studies referred to as the ROSRINE research (Resolution of Site Response Issues during Northridge Earthquake) project.

The PGA at the surface of competent bedrock (1 km/s shear wave velocity found about 100 m below ground surface) is estimated by Silva [ROSRINE Study (2000)] at 0.46 gravity (g). To identify the source of ground motion amplification, one-dimensional ( ), two-dimensional (TELDYN and SASSI), and three-dimensional (SASSI) analyses were conducted using both recorded aftershock data and an estimated ground acceleration time histories at a 100 m depth.

The results of the analyses indicate that (1) local geology and topography could only partially account for the observed ground motion amplification, and (2) the PGA and response spectra at a point near the edge of the ridge (the location of the instrument at the time of the main shock) is in good agreement with recorded values when the angle of incident of shear waves (SV waves) at 100 m depth is assumed at 30° from vertical. Considering the local geology and variation of shear wave velocity with depth, the 30° incident angle at 100 m depth corresponds to an 8° incident angle of shear waves at the ground surface. This observation is, in general, consistent with the incident angles of shear waves reported from study of the recorded aftershock data.  相似文献   

13.
We develop multiple step ahead prediction models of river flow for locations in Tasmania (Australia) for decision support in aquaculture. In predicting river flows for multiple days ahead, we first statistically determine the maximum input lags of rainfall and river flow. We then use machine learning techniques in building models. In multiple step ahead prediction, we consider both static and dynamic approaches. In dynamic approach, one day prediction is served as input to two days ahead prediction. The experimental results demonstrate that, in general, a dynamic approach provides better accuracy in multiple day’s ahead prediction. For Duck Bay location using dynamic approach, support vector regression performs best over linear regression, M5P and multilayer perceptron. However, at Montagu Bay location, we find that M5P performs best over methods. We find that multiple step ahead prediction of river flow for each location requires modelling of lags with associated machine learning techniques.  相似文献   
14.
We derive the cosmic energy equation for the non-point mass system of galaxies (galaxies with halos) by using the adiabatic approximation for the growth of gravitational clustering of galaxies in the expanding Universe. The cosmic energy equation so derived represents the general form of conservation of energy for the expanding volume. Using the derived form of cosmic energy equation we try to study the evolution of correlation potential energy of the system. We also try to explore the condition under which the approximation of extensivity may be applied to the infinite gravitating non-point mass system of galaxies.  相似文献   
15.
16.
Ship hulls, as well as bridges, port dock pilings, dams, and various underwater structures need to be inspected for periodic maintenance. Additionally, there is a critical need to provide protection against sabotage activities, and to establish effective countermeasures against illegal smuggling activities. Unmanned underwater vehicles are suitable platforms for the development of automated inspection systems, but require integration with appropriate sensor technologies. This paper describes a vision system for automated ship-hull inspection, based on computing the necessary information for positioning, navigation, and mapping of the hull from stereo images. Binocular cues are critical in resolving a number of complex visual artifacts that hamper monocular vision in shallow-water conditions. Furthermore, they simplify the estimation of vehicle pose and motion, which is fundamental for successful automatic operation. The system has been implemented on a commercial remotely operated vehicle (ROV), and tested in pool and dock tests. Results from various trials are presented to demonstrate the system capabilities  相似文献   
17.
The potential mineralization and immobilization of soil nitrogen (N), phosphorus (P) and sulfur (S) are relatively high in natural ecosystems. This study was conducted to investigate the changes in essential plant macronutrients; N, P, and S status in response to different soil depth in rangeland ecosystems in vitro. The net nutrient mineralization was measured during 90 days at different depths (0–15, 15–30, 30–45 and 45–60 cm), using kinetic models to estimate the release rate. The net ammonification and mineralization of P and S were described using parabolic diffusion equation, while the power function equation was used to describe the net nitrification. The results indicated that the amount of released ammonium (NH4 +) decreased with time and depth and the rates of net ammonification were negative in all samples. Conversely, nitrification increased with time and depth and the rates were all positive. The net mineralization for both P and S reduced with time. The concentration of mineralized SO4 2? increased with depth like nitrate (NO3 ?). Accumulation of SO4 2? and NO3 ? in subsurface soils and NH4 + and P at surface horizons can increase the potential of their loss by leaching or volatilization.  相似文献   
18.
Prediction of global stability in room and pillar coal mines   总被引:1,自引:0,他引:1  
Global stability is a necessary prerequisite for safe retreat mining and one of the crucial and complex problems in room and pillar mining, so its prediction plays an important role in the safety of retreat mining and the reduction of pillar failure risk. In this study, we have tried to develop predictive models for anticipating global stability. For this purpose, two of the most popular techniques, logistic regression analysis and fuzzy logic, were taken into account and a predictive model was constructed based on each. For training and testing of these models, a database including 80 retreat mining case histories from 18 room and pillar coal mines, located in West Virginia State, USA, was used. The models predict global stability based on the major contributing parameters of pillar stability. It was found that both models can be used to predict the global stability, but the comparison of two models, in terms of statistical performance indices, shows that the fuzzy logic model provides better results than the logistic regression. These models can be applied to identify the susceptibility of pillar failure in panels of coal mines, and this may help to reduce the casualties resulting from pillar instability. Finally, the sensitivity analysis was performed on database to determine the most important parameters on global stability. The results revealed that the pillar width is the most important parameter, whereas the depth of cover is the least important one.  相似文献   
19.
20.
Failure mechanisms of the rock mass in the regions of maximum stress concentrations around a longwall face were assessed. In this respect, seismic events that result from changes in the stress field were analyzed to gain more knowledge about rock failure mechanisms in the proximity of the face area. A deep longwall mine developed at depths of about 3–3.5 km in South Africa was selected as a case study. Seismic moment tensor solutions were obtained for 32 seismic events with moment magnitudes in the range of 0.49 and 2.10. Through moment tensor decomposition, the dominant failure mechanisms were investigated by drawing focal mechanism plots. Further analysis was implemented by depicting the corresponding 3D radiation patterns of P-wave particle motions. Although the results cover various failure mechanisms, the dominant mechanisms are shear, implosional, and compressional failures. According to the results, most of the maximum principal stresses in the mine are compressive and oriented nearly vertical, which are in accordance with the gravitational collapses of the mined out areas. The results obtained from this research show that measuring and analyzing mining-induced seismicity can be a reliable measure to characterize the dominant failure mechanisms in a nondestructive manner and to provide a useful assessment of the stability of the longwall face in advance of extraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号