排序方式: 共有32条查询结果,搜索用时 19 毫秒
21.
ABBASPOUR Razieh MOUSAVI Seyed Morteza RASHIDI Ahmad KHATIB Mohammad Mahdi SHAFIEIBAFTI Shahram 《山地科学学报》2023,148(10):3018-3034
The Shotori mountain range is located along the northern terminus of the Nayband fault on the eastern and western domains of the Tabas and Lut blocks, respectively. This range with NNW-SSE trending and approximately 120 km long includes a series of thrust faults approaching the right-lateral strike-slip Nayband fault. Since the Shotori range has experienced various geological events since the Triassic, our investigations suggest that the basement of the Central Iranian subcontinent of the Shotori range contains the early Triassic deep sedimentary with normal faults which confirms Triassic tensional tectonic stress regime in the region. After the middle Triassic, the mountain range has experienced thrust and strike-slip regimes. Therefore, in this study, we reconstruct the stress regimes for different geological periods using fault-slip data. The inversion of fault-slip data reveals drastic temporal changes in the maximum stress regime (σ1) over the Triassic, Jurassic, Cretaceous, Paleogene, Neogen, and Quaternary. The reconstruction of the stress field based on the age and direction of fault movement reveals that the direction of the maximum horizontal stress axis (σ1) under a tensional stress regime was approximately N129° in the Early Triassic. This stress regime is the cause of thinning and subsidence of the Shotori sedimentary basin. During the middle Triassic, the σ1 direction was about N81° and the upper Triassic, the σ1 direction was almost N115°. The middle Triassic and upper Triassic stress states exhibited two distinct strike-slip and compressive stress regimes. This stress regime led to the uplift of the Shotori sedimentary basin. During the Jurassic, the direction of the maximum horizontal stress axis (σ1) was ~NW-SE under a compressive stress regime. During the Triassic, the σ1 direction was ~N-S. This stress regime led to the formation of the high topography of the Shotori Mountain Range. In the Late Cretaceous, the direction of the maximum horizontal stress axis (σ1) under the extensional stress regime was ~NE-SW. This stress regime led to the uplift of the Paleogen Dacite in eastern Iran. During the Neogene, the σ1 direction was ~N60°. The Quaternary tectonic regime is strike-slip and the σ1 direction is ~N50°, consistent with the current convergence direction of the Arabia–Eurasia plates. Our paleostress analysis reveals four recognized stress in this area, which includes compressional, transtensional, transpressional, and strike-slip regimes. Our findings indicated that the crustal diversity of the tectonic regimes was responsible for the formation of various geological structures, such as folds, faults by different mechanisms, and the present-day configuration of the Shotori sedimentary basin. 相似文献
22.
Khosrojerdi Tooraj Moosavirad Seyed Hamed Ariafar Shahram Ghaeini-Hessaroeyeh Mahnaz 《Natural Resources Research》2019,28(3):1107-1124
Natural Resources Research - Efficient water allocation is one of the most prominent issues in water resources management. In this research, a two-stage interval-parameter stochastic fuzzy... 相似文献
23.
Hassan Hassanzadeh Mehran Pooladi-Darvish Shahram Atabay 《Advances in water resources》2009,32(11):1652-1663
One of the important parameters in existing commercial dual-porosity reservoir simulators is matrix–fracture shape factor, which is customarily obtained by assuming a constant pressure at the matrix–fracture boundary. In his work, Chang [1] and [2] addressed the impact of boundary conditions at the matrix–fracture interface and presented analytical solutions for the transient shape factor and showed that for a slab-shaped matrix block a constant pressure boundary condition leads to an asymptotic (long-time) shape factor of π2/L2, and that a constant volumetric flux leads to an asymptotic shape factor of 12/L2. In a recent paper [3], we reconfirmed Chang’s [1] and [2] results using a Laplace transform approach. In this study, we extend our previous analysis and use infinite-acting radial and linear dual-porosity models, where the boundary condition is chosen at the wellbore, as opposed to at the matrix boundary. The coupled equations for fracture and matrix are solved analytically, taking into account the transient exchange between matrix and fracture. The analytical solution that invokes the time dependency of fracture boundary condition under constant rate is then used to calculate the transient shape factors. It is shown that, for a well producing at constant rate from a naturally fractured reservoir, the appropriate value of stabilized shape factor is 12/L2. This contrasts with the commonly used shape factor for a slab-shaped matrix block that is subject to a constant pressure boundary condition, which is π2/L2. The errors in the matrix–fracture exchange term in a dual-porosity model associated with the use of a shape factor derived based on constant pressure boundary condition at the matrix boundary are then evaluated. 相似文献
24.
We have studied the structure of hot accretion flow bathed in a general large-scale magnetic field. We have considered magnetic parameters , where are the Alfvén sound speeds in three direction of cylindrical coordinate (r,φ,z). The dominant mechanism of energy dissipation is assumed to be the magnetic diffusivity due to turbulence and viscosity in the accretion flow. Also, we adopt a more realistic model for kinematic viscosity (ν=αc s H), with both c s and H as a function of magnetic field. As a result in our model, the kinematic viscosity and magnetic diffusivity (η=η 0 c s H) are not constant. In order to solve the integrated equations that govern the behavior of the accretion flow, a self-similar method is used. It is found that the existence of magnetic resistivity will increase the radial infall velocity as well as sound speed and vertical thickness of the disk. However the rotational velocity of the disk decreases by the increase of magnetic resistivity. Moreover, we study the effect of three components of global magnetic field on the structure of the disk. We found out that the radial velocity and sound speed are Sub-Keplerian for all values of magnetic field parameters, but the rotational velocity can be Super-Keplerian by the increase of toroidal magnetic field. Also, Our numerical results show that all components of magnetic field can be important and have a considerable effect on velocities and vertical thickness of the disk. 相似文献
25.
One of the most important qualitative aspects of wetland ecosystem management is preserving the natural quality of water in such environments. This would not be achievable unless continuous water quality monitoring is implemented. With the recent advances in remote sensing technology, this technology could assist us to produce accurate models for estimating water quality variables in the ecosystem of wetlands. The present study was carried out to evaluate the capability of remote sensing data to estimate the water quality variables [pH, total suspended solids (TSS), total dissolved solids (TDS), turbidity, nitrate, sulfate, phosphate, chloride and the concentration of chlorophyll a] in Zarivar International Wetland using linear regression (LR) and artificial neural network (ANN) models. For this purpose, spectral reflectance of bands 2, 3, 4 and 5 of the OLI sensor of Landsat 8 was utilized as the input data and the collected chemical and physical data of water samples were selected as the objective data for both ANN and LR models. Based on our results overall, ANN model was the proper model compared with LR model. The spectral reflectance in bands 5 and 4 of OLI sensor revealed the best results to estimate TDS, TSS, turbidity and chlorophyll in comparison with other used bands in ANN model, respectively. We conclude that OLI sensor data are an excellent means for studying physical properties of water quality and comparing its chemical properties. 相似文献
26.
Movahed Zohreh Radzuan Junin Hassan Amiri Bakhtiary Shahram Taghavi Poor Ruhangiz Mohamadian Ali Asghar Movahed 《Arabian Journal of Geosciences》2016,9(3):225
Core samples are still today considered as the standard measurement against all other measurements which must be compared. Core analysis usually focuses on the worse portion of the reservoir due to the fact that core recovery has rarely been well in a highly fractured zone; hence, permeability measured from core sample is often not representative. Core analysis is a common method to identify small-scale fractures of the well and permeability and porosity; however, there are some limitations in the core procedure such as it is highly expensive and unidirectional and has a low recovery coefficient in fractured zone. In contrast, there tends to be a mistrust and even a suspicion of those logging instruments that make measurements which threaten to replicate or even replace the “sacred core.” Thus, image logs are more useful to study the subsurface fractures in these such cases and the logs which come closest to achieving this are the high-resolution micro resistivity (OBMI) and acoustic geological imaging (UBI). The core and OBMI-UBI result was matched in order to verify the log measurements. Furthermore, FMI data were integrated with other open-hole logs to derive a permeability curve. As demonstrated in the case studies, it is believed that the permeability in the basement could be reasonably evaluated using this method. As a result, this exercise has proven to be very valuable, not only for demonstrating the value of the log data, but also it has also highlighted some significant limitations of the core in water-based mud and oil-based mud systems. 相似文献
27.
28.
29.
Application of a continuum numerical model for pile driving analysis and comparison with a real case
This paper presents the results of a so-called continuum numerical model for wave propagation analysis and soil-pile dynamic response during pile driving. An axisymmetric finite difference numerical model is developed having solid elements for both pile structure and the soil media surrounding and below the pile. Interface elements are used between the pile shaft and the soil to facilitate the sliding between the two media. The performance of the developed model is verified in two stages. First, a simple rod is subjected to a half sine-wave force function at the rod head and the corresponding reflections of force and velocity (multiplied by impedance) are presented for different boundary conditions at the rod tip. The model is then used for signal matching analysis of a real driven pile for which complete information of soil layering, dynamic test signals, and static load test results are available. The signal matching analysis was performed successfully and comparison between several other predicted and measured parameters proved the reasonably good performance of the developed continuum model. 相似文献
30.
This study investigates the number of real ground motions (GMs) required to accurately capture the structural responses when using code-, intensity-, and risk-based seismic assessment frameworks. A key consideration is the use of as-recorded hazard consistent GMs, which appropriately characterize the seismic hazard of the site, for performing response history analysis. A comparison of the structural responses of 3 steel moment resisting buildings using different sets of GMs is made with results obtained using a large set of GMs. The empirical results demonstrate that, in most cases, a risk-based assessment needs a larger number of response history analyses than an intensity-based assessment method to accurately capture the seismic demand on the structural systems. Also, given the same number of GMs, the structural responses from a risk-based assessment are more reliable and stable than those for an intensity-based method. Moreover, the results help to quantify the uncertainty in the structural responses due to using different sample sets of GMs given the applied number of GMs. In addition, the results indicate that a significant bias in structural responses is likely when following the recommendations from several seismic design codes, which suggest utilizing the maximum structural responses if 3 GM pairs are used for response history analysis. A detailed statistical analyses show that the application of 7 GM pairs are sufficient to accurately and reliably estimate structural responses. 相似文献