首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   0篇
地球物理   19篇
地质学   8篇
海洋学   3篇
天文学   23篇
自然地理   10篇
  2017年   3篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2000年   2篇
  1999年   5篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有63条查询结果,搜索用时 46 毫秒
11.
The eruption of Unzen Volcano commenced on 17 November 1990. Phreatic and phreatomagmatic eruptions occurred by early May 1991. No large-scale explosive eruptions preceded the extrusion of lava domes. Lava domes appeared in a summit crater on 20 May 1991, and they grew on the steep slope of Mt. Fugen at Unzen Volcano. Rockfalls from the margins of the domes frequently generated pyroclastic flows. Major pyroclastic flows occurred on 3 June, 8 June, and 15 September 1991. The 3 June pyroclastic flow killed forty-three persons. Many of the pyroclastic flows seem to have resulted from the simple rockfalls, except one flow on 8 June, which was accompanied by an explosion from the crater. Many of the rockfalls that generated pyroclastic flows were witnessed. As of November 1991. Unzen Volcano was still active with a nearly constant magma-supply rate of about 0.3 × 106 m3/d. The total magma output exceeded 45 × 106 m3 by the beginning of November 1991. The volume of the lava domes is more than 23 × 106 m3.  相似文献   
12.
A JHKK survey camera based on a 1040×1040 PtSi Charge Sweep Device has been constructed in a joint programme of the University of Tokyo, the National Astronomical Observatory of Japan and the South African Astronomical Observatory. We describe its design, construction and initial testing.  相似文献   
13.
M. P. Nakada 《Solar physics》1979,62(2):343-346
An attempt is made to specify coronal hole boundaries in the brightness of 284 of Fe xv. This is done by evaluating brightnesses of 284 at boundaries selected by various groups. These results are in quite good agreement and suggest a brightness value of (0.8±0.4)×1012 photons cm–2 s–1 sr–1 for coronal hole boundaries in 284. The examination of a number of isophote maps near this boundary brightness shows no consistent brightness gradient.  相似文献   
14.
M. P. Nakada 《Solar physics》1977,51(2):327-343
Average solar wind properties at 1 AU either alone or together with the electron density distribution are used to obtain or review some results that relate coronal temperatures, temperature gradients, and compositions. Measured values of the temperature (T) and the temperature gradient parameter ( = -d ln T/d ln r) are used to find compositions that satisfy the equations used to obtain the results. The total energy equation may be satisfied if the thermal conductivity is reduced by considerable depletions of H+ in the corona. The electron energy equation only gives information on coronal compositions that are coupled with d/d ln r. The hydrostatic approximation (momentum equation) for the electron density distribution also appears to require considerable depletions of H+ in the corona. Results from the integrated momentum equation for the solar wind support the hydrostatic results; together, they give some information on the minimum value of in the outer corona. Some changes in assumptions or values of parameters that may modify these interpretations are discussed.  相似文献   
15.
The Miyazaki Plain, eastern part of Kyushu, Japan, is characterized by both significant negative gravity anomalies and aseismic crustal uplifting (1 mm/year) in the Late Pleistocene and Holocene. We examine the relationship between these two phenomena, which may provide important constraints on the interaction between the collision and/or subduction of the Kyushu-Palau Ridge and the forearc. We estimate the mass deficiency below 11-km depth by using the gravity anomalies and P-wave velocity structure of the upper crust. The onset of the load accumulation, 0.5–0.4 Ma, is inferred from the movement of the fluvial terraces considering the tephrochronology. The loading history is assumed to be a linear function of time. We evaluate the crustal rebound by assuming a viscoelastic plate deformation with an underplating load existing at 20- or 30-km depth. The predicted crustal movement for models with a lithospheric (crustal) viscosity of 1023–1024 Pa s can explain the observed altitudes of the shoreline of the marine terraces formed at the Last Interglacial of about 125 kyr BP and the middle Holocene of 5–6 kyr BP. Although we cannot restrict the origin of the buoyant body, the subduction of the Kyushu-Palau Ridge, remnant arc associated with back-arc opening of the Shikoku Basin, may be related to the buoyancy for the uplifting region examined here. On the other hand, the buoyant body off the Miyazaki Plain probably plays an important role in the interaction between the subducting oceanic slab and the overriding forearc crust. Thus, the observed lateral variation of the interplate coupling on the convergent boundary along the Nankai Trough may be attributed to the existence of the buoyant body.  相似文献   
16.
Chronology and products of the 2000 eruption of Miyakejima Volcano, Japan   总被引:1,自引:1,他引:0  
Lateral migration of magma away from Miyakejima volcanic island, Japan, generated summit subsidence, associated with summit explosions in the summer of 2000. An earthquake swarm beneath Miyakejima began on the evening of 26 June 2000, followed by a submarine eruption the next morning. Strong seismic activity continued under the sea from beneath the coast of Miyakejima to a few tens of kilometers northwest of the island. Summit eruptive event began with subsidence of the summit on 8 July and both explosions and subsidence continued intermittently through July and August. The most intense eruptive event occurred on 18 August and was vulcanian to subplinian in type. Ash lofted into the stratosphere fell over the entire island, and abundant volcanic bombs were erupted at this time. Another large explosion took place on 29 August. This generated a low-temperature pyroclastic surge, which covered a residential area on the northern coast of the island. The total volume of tephra erupted was 9.3×106 m3 (DRE), much smaller than the volume of the resulting caldera (6×108 m3). Migration of magma away from Miyakejima was associated with crustal extension northwest of Miyakejima and coincident shrinkage of Miyakejima Island itself during July–August 2000. This magma migration probably caused stoping of roof rock into the magma reservoir, generating subsurface cavities filled with hydrothermal fluid and/or magmatic foam and formation of a caldera (Oyama Caldera) at the summit. Interaction of hydrothermal fluid with ascending magma drove a series of phreatic to phreatomagmatic eruptions. It is likely that new magma was supplied to the reservoir from the bottom during waning stage of magmas migration, resulting in explosive discharge on 18 August. The 18 August event and phreatic explosions on 29 August produced a conduit system that allowed abundant SO2 emission (as high as 460 kg s–1) after the major eruptive events were over. At the time of writing, inhabitants of the island (about 3,000) have been evacuated from Miyakejima for more than 3 years.  相似文献   
17.
We report on the light variations of the infrared stars that were discovered recently in the Magellanic clusters NGC 419, 1783 and 1978. Their periods, of 528, 458 and 491 days, are among the longest known for carbon-rich Mira variables in the Clouds. All three IR stars were found to lie on the extension of the period– M bol relation derived from the shorter-period C-rich Miras while they were 0.45–0.70 mag fainter than the extension of the period– M K relation. Their main sequence masses were determined by isochrone fitting to be 1.5–1.6 M, consistent with the prediction of the evolutionary models of Vassiliadis & Wood.  相似文献   
18.
Abstract— Experimental studies of coalescence between Mg grains and SiO grains in smoke reveal the direct production of crystalline forsterite grains. The present results also show that different materials can be produced by grain‐grain collisions, which have been considered one of the models of grain formation in the interstellar medium. The fundamentals of coalescence growth in smoke, which have been developed in our series of experiments, are presented in this paper. Mg2Si polyhedral grains were obtained in a Mg grain‐rich atmosphere. Mg2SiO4 polyhedral grains were obtained in a SiO grain‐rich atmosphere. The IR spectra of the resultant grains showed the characteristics of crystalline forsterite.  相似文献   
19.
The latest eruption of Haruna volcano at Futatsudake took placein the middle of the sixth century, starting with a Plinianfall, followed by pyroclastic flows, and ending with lava domeformation. Gray pumices found in the first Plinian phase (lowerfall) and the dome lavas are the products of mixing betweenfelsic (andesitic) magma having 50 vol. % phenocrysts and maficmagma. The mafic magma was aphyric in the initial phase, whereasit was relatively phyric during the final phase. The aphyricmagma is chemically equivalent to the melt part of the phyricmafic magma and probably resulted from the separation of phenocrystsat their storage depth of 15 km. The major part of the felsicmagma erupted as white pumice, without mixing and heating priorto the eruption, after the mixed magma (gray pumice) and heatedfelsic magma (white pumice) of the lower fall deposit. Althoughthe mafic magma was injected into the felsic magma reservoir(at 7 km depth), part of the product (lower fall ejecta) precedederuption of the felsic reservoir magma, as a consequence ofupward dragging by the convecting reservoir of felsic magma.The mafic magma injection made the nearly rigid felsic magmaerupt, letting low-viscosity mixed and heated magmas open theconduit and vent. Indeed the lower fall white pumices preservea record of syneruptive slow ascent of magma to 2 km depth,probably associated with conduit formation. KEY WORDS: high-crystallinity felsic magma; magma plumbing system; multistage magma mixing; upward dragging of injected magma; vent opening by low-viscosity magma  相似文献   
20.
The Hyuganada region, a forearc region of Southwest Japan, is characterized by several interesting geological and geophysical features, i.e., significant aseismic crustal uplift of 120 m during the past 120 thousand years at the Miyazaki Plain, negative free-air gravity anomalies with the maximum magnitude of −130 mgal, and relatively less cohesive interplate coupling compared with that for off the Shikoku and Kii Peninsula. In order to examine the causes of these observations, we determined a detailed three-dimensional seismic velocity structure based on the seismic data observed by ocean bottom seismometers (OBS) and land stations. P- and S-wave tomographic velocity structures clearly indicate the subducting slab and also the zones of high Poisson's ratio at 25–35 km depth along the coastline of the northeastern part of the Hyuganada. The region with high Poisson's ratio may correspond to the serpentinized mantle wedge as suggested for other mantle wedges, and appears to be coincident with the zone for observed aseismic slips such as the slow-slip and after-slip events. Also, the detection may be related to a relatively weak interplate coupling in the Hyuganada region. The tomographic structures also indicate low velocity zones with a horizontal scale comparable to the Kyushu-Palau Ridge in and around the subducting slab. If we assume that the low velocity zones correspond to the subducted Kyushu-Palau Ridge, then the predicted gravity anomaly due to the density contrast between the low velocity zones and the surrounding region can explain about 60% of the gravity anomaly in the Hyuganada region. The buoyancy is probably an important factor for the crustal uplift observed in the Miyazaki Plain, the steep bending of the subducting slab and the normal fault-type earthquakes around the Hyuganada region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号