全文获取类型
收费全文 | 103篇 |
免费 | 2篇 |
国内免费 | 1篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 30篇 |
地球物理 | 25篇 |
地质学 | 20篇 |
海洋学 | 8篇 |
天文学 | 17篇 |
综合类 | 1篇 |
自然地理 | 1篇 |
出版年
2018年 | 3篇 |
2016年 | 3篇 |
2015年 | 3篇 |
2014年 | 1篇 |
2013年 | 2篇 |
2011年 | 2篇 |
2010年 | 2篇 |
2009年 | 2篇 |
2008年 | 4篇 |
2007年 | 11篇 |
2006年 | 3篇 |
2005年 | 9篇 |
2004年 | 5篇 |
2003年 | 5篇 |
2001年 | 1篇 |
2000年 | 3篇 |
1999年 | 4篇 |
1998年 | 7篇 |
1997年 | 4篇 |
1996年 | 4篇 |
1994年 | 6篇 |
1993年 | 4篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1989年 | 3篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 14 毫秒
31.
Observations from two SOund Detection And Ranging (SODAR) units, a 10 m micrometeorological tower and five Automated Surface Observing Stations (ASOS) were examined during several synoptic scale flow regimes over New York City after the World Trade Center disaster on September 11, 2001. An ARPS model numerical simulation was conducted to explore the complex mesoscale boundary layer structure over New York City. The numerical investigation examined the urban heat island, urban roughness effect and sea breeze structure over the New York City region. Estimated roughness lengths varied from 0.7 m with flow from the water to 4 m with flow through Manhattan. A nighttime mixed layer was observed over lower Manhattan, indicating the existence of an urban heat island. The ARPS model simulated a sea-breeze front moving through lower Manhattan during the study period consistent with the observations from the SODARs and the 10-m tower observations. Wind simulations showed a slowing and cyclonic turning of the 10-m air flow as the air moved over New York City from the ocean. Vertical profiles of simulated TKE and wind speeds showed a maximum in TKE over lower Manhattan during nighttime conditions. It appears that this TKE maximum is directly related to the influences of the urban heat island. 相似文献
32.
33.
A case study of the structure of the nocturnal boundary layer (NBL) over complex terrain is presented. Observations were made during the third night of Project STABLE (Weber and Kurzeja, 1991), whose main goal was to study turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia.The passage of a mesoscale phenomenon, defined as a turbulent meso-flow (TMF) with an explanation of the nomenclature used, and a composite structure of the lowest few hundred meters over complex terrain are presented. The spatial extent of the TMF was at least 30–50 km, but the forcing is not well understood. The TMF occurred without the presence of a synoptic-scale cold front, under clear conditions, and with no discernible discontinuity in a microbarograph pressure trace. The structure of the NBL over the complex terrain at SRS differed from the expected homogeneous terrain NBL. The vertical structure exhibited dual low level wind maxima, dual inversions, and a persistent elevated turbulent layer.The persistent elevated turbulent layer, with a spatial extent of at least 30 km, was observed for the entire night. The persistent adiabatic layer may have resulted from turbulence induced by shear instability. 相似文献
34.
Aircraft (NCAR Electra), ship (R/V Cape Hatteras), buoy (NCSU Buoy 2) and satellite (NOAA-7 and 9) measurements have been used to observe the structure of the Marine Boundary Layer (MBL) offshore of Wilmington, North Carolina, during the intense cold-air outbreak of 28 January, 1986, as part of the Genesis of Atlantic Lows Experiment (GALE). Air mass modification processes, driven primarily by the surface turbulent latent and sensible heat fluxes, caused the overlying air mass to warm and moisten as it advected over the warmer waters of the eastern United States continental shelf. Maximum observed total (latent + sensible) heat flux was 1045W/m2 (at a height of 49 m) over the core of the Gulf Stream. Heat flux values decreased both east and west of this region, primarily in response to changes in the air-sea temperature difference.MBL height increased steadily in the offshore direction in response to increasing convection. The turbulent structure showed a buoyancy-dominated MBL between 0.1 z/h and 0.8 z/h; whereas shear was important above and below this level, vertical transport of kinetic energy (KE) was dominant as a source term only above 0.8 z/h. The normalized turbulent kinetic energy (TKE) budgets observed at different offshore locations showed general agreement at different flight levels. Thus the findings support the validity of the similarity relations under intense convective conditions. 相似文献
35.
36.
Numerical investigation of Hurricane Gilbert (1988) effect on the Loop Current warm core eddy (WCE) in the Gulf of Mexico
is performed using the Modular Ocean Model version 2 (MOM2). Results show that the storm-induced maximum sea surface temperature
(SST) decrease in Gilbert’s wake is over 2.5°C, as compared with the 3.5°C cooling in the absence of the WCE. The near-inertial
oscillation in the wake reduces significantly in an along-track direction with the presence of the WCE. This effect is also
reflected between the mixed layer and the thermocline, where the current directions are reversed with the upper layer. After
two inertial periods (IP), the current reversal is much less obvious. In addition, it is demonstrated that Hurricane Gilbert
wind stress increases the current speed of the WCE by approximate 133%. With the forcing of Gilbert, the simulated translation
direction and speed of the WCE towards the Mexican coast are closer to the observed (42% more accurate in distance and 78%
more accurate in direction) compared with the simulation without the Gilbert forcing. The simulated ocean response to Gilbert
generally agrees with the recent observations in Hurricane Fabian. 相似文献
37.
Sea-breeze-initiated rainfall over the east coast of India during the Indian southwest monsoon 总被引:1,自引:0,他引:1
Matthew Simpson Hari Warrior Sethu Raman P. A. Aswathanarayana U. C. Mohanty R. Suresh 《Natural Hazards》2007,42(2):401-413
Sea-breeze-initiated convection and precipitation have been investigated along the east coast of India during the Indian southwest
monsoon season. Sea-breeze circulation was observed on approximately 70–80% of days during the summer months (June–August)
along the Chennai coast. Average sea-breeze wind speeds are greater at rural locations than in the urban region of Chennai.
Sea-breeze circulation was shown to be the dominant mechanism initiating rainfall during the Indian southwest monsoon season.
Approximately 80% of the total rainfall observed during the southwest monsoon over Chennai is directly related to convection
initiated by sea-breeze circulation. 相似文献
38.
—?The hydrostatic Naval Research Laboratory/North Carolina State University (NRL/NCSU) model was used to study the mesoscale dynamics and diurnal variability of the Intertropical Convergence Zone (ITCZ) over the Indian Ocean in the short-range period. To achieve this objective the initial conditions from two northeast monsoon episodes (29 January, 1997 and 29 January, 1998) were run for 48-hour simulations using a triple-nested grid version of the model with 1.5°?×?1.5°, 0.5°?×?0.5° and 0.17°?×?0.17° resolutions. The 1997 case represents a typical northeast monsoon episode, while the 1998 case depicts an abnormal monsoon episode during an El Niño event.¶Comparisons between the model-produced and analyzed mean circulation, wind speed, and associated rainfall for different spatial scales are presented. During the active northeast monsoon season in 1997, the major low-level westerly winds and associated high rainfall rates between 0° and 15°S were simulated reasonably well up to 24 hours. During the 1998 El Niño event, the model was capable of simulating weak anomalous easterly winds (between 0° and 15°S) with much lower rainfall rates up to 48 hours. In both simulations, the finest grid size resulted in largest rainfall rates consistent with Outgoing Longwave Radiation data.¶The model performance was further evaluated using the vertical profiles of the vertical velocity, the specific humidity and temperature differences between the model outputs and the analyses. It is found that during a typical northeast monsoon year, 1997, the water vapor content in the middle troposphere was largely controlled by the low-level convergence determined by strong oceanic heat flux gradient. In contrast, during the 1998 El Niño year moisture was present only in the lower troposphere. Due to strong subsidence associated with Walker circulation over the central and eastern Indian Ocean, deep convection was not present. Finally, the diurnal variations of the maximum rainfall, vertical velocity and total heat flux were noticeable only during the 1997 northeast monsoon year. 相似文献
39.
Rebecca E. Eager Sethu Raman Teddy R. Holt Douglas Westphal Jeffrey Reid Jason Nachamkin Ming Liu Abdulla Al Mandoos 《Pure and Applied Geophysics》2007,164(8-9):1747-1764
A statistical evaluation of the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) was performed over the Arabian Gulf region for the period, 1 August to 5 October, 2004. Verification skill scores of bias and root-mean-square error were estimated for surface variables and for vertical profiles to investigate any diurnal variations. The model predictions of boundary-layer heights are compared with the observations at Abu Dhabi, United Arab Emirates. The Middle East presents challenges to numerical weather prediction due to complex land-ocean-land mesoscale processes. An independent data set of surface measurements from 50 stations in the UAE was available from the Department of Water Resources Studies, Abu Dhabi for model verification. The results indicate a diurnal variation in the model errors. The errors are small considering the magnitudes of the observed variables. Errors in the coastal region can be attributed to the differences in the timing of the onset of sea and land breeze circulations in the simulations as compared to the observations. Errors are relatively smaller in the offshore locations. 相似文献
40.
Following the collapse of the New York World Trade Center (WTC) towers on September 11, 2001, Local, State, and Federal agencies initiated numerous air monitoring activities to better understand the ongoing impacts of emissions from the disaster. The collapse of the World Trade Center towers and associated fires that lasted for several weeks resulted at times in a noticeable plume of material that was dispersed around the Metropolitan New York City (NYC) area. In general, the plume was only noticeable for a short period of time following September 11, and only apparent close to the World Trade Center site. A study of the estimated pathway which the plume of WTC material would likely follow was completed to support the United States Environmental Protection Agency’s 2002 initial exposure assessments. In this study, the WTC emissions were simulated using the CALMET-CALPUFF model in order to examine the general spatial and temporal dispersion patterns over NYC. This paper presents the results of the CALPUFF plume model in terms of plume dilution and location, since the exact source strength remains unknown. Independent observations of PM2.5 are used to support the general dispersion features calculated by the model. Results indicate that the simulated plume matched well with an abnormal increase (600–1000% of normal) in PM2.5 two nights after the WTC collapse as the plume rotated north to southeast, towards parts of NYC. Very little if any evidence of the plume signature was noted during a similar flow scenario a week after September 11. This leads to the conclusion that other than areas within a few kilometers from the WTC site, the PM2.5 plume was not observable over NYC’s background concentration after the first few days. 相似文献