首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   4篇
  国内免费   3篇
测绘学   6篇
大气科学   20篇
地球物理   43篇
地质学   34篇
海洋学   9篇
天文学   14篇
自然地理   12篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   8篇
  2017年   5篇
  2016年   8篇
  2015年   8篇
  2014年   11篇
  2013年   6篇
  2012年   1篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   6篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
  1978年   3篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
111.
We present multitechnique U‐Pb geochronology and Hf isotopic data from zircon separated from rapakivi biotite granite within the Eocene Golden Horn batholith in Washington, USA. A weighted mean of twenty‐five Th‐corrected 206Pb/238U zircon dates produced at two independent laboratories using chemical abrasion‐isotope dilution‐thermal ionisation mass spectrometry (CA‐ID‐TIMS) is 48.106 ± 0.023 Ma (2s analytical including tracer uncertainties, MSWD = 1.53) and is our recommended date for GHR1 zircon. Microbeam 206Pb/238U dates from laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) and secondary ion mass spectrometry (SIMS) laboratories are reproducible and in agreement with the CA‐ID‐TIMS date to within < 1.5%. Solution multi‐collector ICP‐MS (MC‐ICP‐MS) measurements of Hf isotopes from chemically purified aliquots of GHR1 yield a mean 176Hf/177Hf of 0.283050 ± 17 (2s,= 10), corresponding to a εHf0 of +9.3. Hafnium isotopic measurements from two LA‐ICP‐MS laboratories are in agreement with the solution MC‐ICP‐MS value. The reproducibility of 206Pb/238U and 176Hf/177Hf ratios from GHR1 zircon across a variety of measurement techniques demonstrates their homogeneity in most grains. Additionally, the effectively limitless reserves of GHR1 material from an accessible exposure suggest that GHR1 can provide a useful reference material for U‐Pb geochronology of Cenozoic zircon and Hf isotopic measurements of zircon with radiogenic 176Hf/177Hf.  相似文献   
112.
To enable downscaling of seasonal prediction and climate change scenarios, long-term baseline regional climatologies which employ global model forcing are needed for South America. As a first step in this process, this work examines climatological integrations with a regional climate model using a continental scale domain nested in both reanalysis data and multiple realizations of an atmospheric general circulation model (GCM). The analysis presents an evaluation of the nested model simulated large scale circulation, mean annual cycle and interannual variability which is compared against observational estimates and also with the driving GCM for the Northeast, Amazon, Monsoon and Southeast regions of South America. Results indicate that the regional climate model simulates the annual cycle of precipitation well in the Northeast region and Monsoon regions; it exhibits a dry bias during winter (July–September) in the Southeast, and simulates a semi-annual cycle with a dry bias in summer (December–February) in the Amazon region. There is little difference in the annual cycle between the GCM and renalyses driven simulations, however, substantial differences are seen in the interannual variability. Despite the biases in the annual cycle, the regional model captures much of the interannual variability observed in the Northeast, Southeast and Amazon regions. In the Monsoon region, where remote influences are weak, the regional model improves upon the GCM, though neither show substantial predictability. We conclude that in regions where remote influences are strong and the global model performs well it is difficult for the regional model to improve the large scale climatological features, indeed the regional model may degrade the simulation. Where remote forcing is weak and local processes dominate, there is some potential for the regional model to add value. This, however, will require improvments in physical parameterizations for high resolution tropical simulations.  相似文献   
113.
Understanding the magnitude of and uncertainty around soil carbon flux (SCF) is important in light of California’s efforts to increase SCF (from the atmosphere to soils) for climate change mitigation. SCF depends, to a great extent, on how soils are managed. Here, we summarize the results of an elicitation of soil science and carbon cycle experts aiming to characterize understanding of current SCF in California’s cropland and rangeland, and how it may respond to alternative management practices over time. We considered four cropland management practices—biochar, compost, cover crops, and no-till—and two rangeland management practices, compost and high-impact grazing. Results across all management practices reveal underlying uncertainties as well as very modest opportunities for soil carbon management to contribute meaningfully to California’s climate mitigation. Under median scenarios, experts expect all the surveyed management practices to reverse SCF from negative to positive, with direct carbon additions via biochar and compost offering the best potential for boosting the soil carbon pool.  相似文献   
114.
Recharge from preferential flow through mega-thick (100–1000 m) unsaturated zones is a pervasive phenomenon, as demonstrated with a case study of volcanic highland recharge areas in the Great Basin province in southern Nevada, USA. Statistically significant rising water-level trends occur for most study-area wells and resulted from a relatively wet period (1969–2005) in south-central Nevada. Wet and dry winters control water-level trends, with water levels rising within a few months to a year following a wet-winter recharge event and declining during sustained dry periods. Even though a megadrought has persisted since 2000, this drought condition did not preclude major recharge events. Modern groundwater reaching the water table is consistent with previous geochemical studies of the study area that indicate mixing of modern and late Pleistocene recharge water. First-order approximations and simple mixing models of modern and late Pleistocene water indicate that 10% to 40% of recharge is preferential flow and that modern recharge may play a larger role in the water budget than previously thought.  相似文献   
115.
Spreading ridge-transform geometries will remain stable so long as accretion is symmetric. Asymmetric accretion, however, will cause lengthening or shortening of transforms and, in extreme cases, may result in zero-offset transforms (ZOTs) and very-long-offset transforms (VLOTs) such as the Ninetyeast and Chagos transforms. We use a simple kinematic model to examine the effects of various parameters on the evolution of zero-offset transforms and very-long-offset transforms. Starting with the transform length spectrum found along the Mid-Atlantic Ridge distributed in a randomly determined ridge-transform configuration, we allow for asymmetric accretion along ridge segments, assuming that individual ridge segments act independently. We analyze the effects of initial configuration, degree of asymmetry, and degree of bias in asymmetry on the generation of very-long-offset and zero-offset transforms. Finally, we examine the effect of these parameters on the possible steady-state nature of the transform length spectra. This model predicts that zero-offset transforms can be generated with a minimum of asymmetry, and that bias in asymmetry and initial ridge-transform-ridge configuration have no effect on generation of ZOTs. Similarly, random variations in spreading asymmetry have difficulty generating significant increases in transform length, so VLOTs may be manifestations of dynamic processes. Of the parameters tested, only lack of memory of zero-offset transforms has any effect on transform length distribution, and therefore, the transform length spectrum remains steady-state if ZOTs have some degree of memory.  相似文献   
116.
New geochemical data from the Cocos Plate constrain the composition of the input into the Central American subduction zone and demonstrate the extent of influence of the Galápagos Hotspot on the Cocos Plate. Samples include sediments and basalts from Ocean Drilling Program (ODP) Site 1256 outboard of Nicaragua, gabbroic sills from ODP Sites 1039 and 1040, tholeiitic glasses from the Fisher Ridge off northwest Costa Rica, and basalts from the Galápagos Hotspot Track outboard of Central Costa Rica. Site 1256 basalts range from normal to enriched MORB in incompatible elements and have Pb and Nd isotopic compositions within the East Pacific Rise MORB field. The sediments have similar 206Pb/204Pb and only slightly more radiogenic 207Pb/204Pb and 208Pb/204Pb isotope ratios than the basalts. Altered samples from the subducting Galápagos Hotspot Track have similar Nd and Pb isotopic compositions to fresh Galápagos samples but have significantly higher Sr isotopic composition, indicating that the subduction input will have a distinct geochemical signature from Galápagos-type mantle material that may be present in the wedge beneath Costa Rica. Gabbroic sills from Sites 1039 and 1040 in East Pacific Rise (EPR) crust show evidence for influence of the Galápagos Hotspot ∼100 km beyond the morphological hotspot track.  相似文献   
117.
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high-e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, “rubble pile” asteroid geophysics, and gravitational interactions. The YORP effect torques a “rubble pile” asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.  相似文献   
118.
Atwater and Macdonald have suggested that oblique spreading occurs at mid-ocean ridges which spread slowly (half rate less than 3 cm/yr), while the spreading is perpendicular at faster-spreading ridges. This paper explores this relation using the ratio of the power dissipated at ridges to that on transform faults to find the angle of oblique spreading (θ). The dependence of the energy dissipation rate on spreading rate is included in simple models of a ridge and transform. These arguments suggest that θ is related to the half spreading rate approximately by sin θ ~ V?1.  相似文献   
119.
120.
Summary The purposes of this paper are to evaluate the new version of the regional model, RegCM3, over South America for two test seasons, and to select a domain for use in an experimental nested prediction system, which incorporates RegCM3 and the European Community-Hamburg (ECHAM) general circulation model (GCM). To evaluate RegCM3, control experiments were completed with RegCM3 driven by both the NCEP/NCAR Reanalysis (NNRP) and ECHAM, using a small control domain (D-CTRL) and integration periods of January–March 1983 (El Ni?o) and January–March 1985 (La Ni?a). The new version of the regional model captures the primary circulation and rainfall differences between the two years over tropical and subtropical South America. Both the NNRP-driven and ECHAM-driven RegCM3 improve the simulation of the Atlantic intertropical convergence zone (ITCZ) compared to the GCM. However, there are some simulation errors. Irrespective of the driving fields, weak northeasterlies associated with reduced precipitation are observed over the Amazon. The simulation of the South Atlantic convergence zone is poor due to errors in the boundary condition forcing which appear to be amplified by the regional model. To select a domain for use in an experimental prediction system, sensitivity tests were performed for three domains, each of which includes important regional features and processes of the climate system. The domain sensitivity experiments were designed to determine how domain size and the location of the GCM boundary forcing affect the regional circulation, moisture transport, and rainfall in two years with different large scale conditions. First, the control domain was extended southward to include the exit region of the Andes low level jet (D-LLJ), then eastward to include the South Atlantic subtropical high (D-ATL), and finally westward to include the subsidence region of the South Pacific subtropical high and to permit the regional model more freedom to respond to the increased resolution of the Andes Mountains (D-PAC). In order to quantify differences between the domain experiments, measures of bias, root mean square error, and the spatial correlation pattern were calculated between the model results and the observed data for the seasonal average fields. The results show the GCM driving fields have remarkable control over the RegCM3 simulations. Although no single domain clearly outperforms the others in both seasons, the control domain, D-CTRL, compares most favorably with observations. Over the ITCZ region, the simulations were improved by including a large portion of the South Atlantic subtropical high (D-ATL). The methodology presented here provides a quantitative basis for evaluating domain choice in future studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号