首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   17篇
  国内免费   19篇
测绘学   4篇
大气科学   18篇
地球物理   109篇
地质学   122篇
海洋学   17篇
天文学   65篇
综合类   10篇
自然地理   19篇
  2024年   2篇
  2023年   4篇
  2022年   6篇
  2021年   6篇
  2020年   8篇
  2019年   11篇
  2018年   27篇
  2017年   18篇
  2016年   20篇
  2015年   27篇
  2014年   20篇
  2013年   31篇
  2012年   22篇
  2011年   27篇
  2010年   20篇
  2009年   14篇
  2008年   14篇
  2007年   17篇
  2006年   8篇
  2005年   7篇
  2004年   11篇
  2003年   5篇
  2002年   13篇
  2001年   6篇
  2000年   6篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有364条查询结果,搜索用时 0 毫秒
121.
Io’s sublimation-driven atmosphere is modeled using the direct simulation Monte Carlo (DSMC) method. These rarefied gas dynamics simulations improve upon earlier models by using a three-dimensional domain encompassing the entire planet computed in parallel. The effects of plasma heating, planetary rotation, inhomogeneous surface frost, molecular residence time of SO2 on the exposed (non-volatile) rocky surface, and surface temperature distribution are investigated. Circumplanetary flow is predicted to develop from the warm dayside toward the cooler nightside. Io’s rotation leads to a highly asymmetric frost surface temperature distribution (due to the frost’s high thermal inertia) which results in circumplanetary flow that is not axi-symmetric about the subsolar point. The non-equilibrium thermal structure of the atmosphere, specifically vibrational and rotational temperatures, is also examined. Plasma heating is found to significantly inflate the atmosphere on both the dayside and nightside. The plasma energy flux causes high temperatures at high altitudes but plasma energy depletion through the dense gas column above the warmest frost permits gas temperatures cooler than the surface at low altitudes. A frost map (Douté, S., Schmitt, B., Lopes-Gautier, R., Carlson, R., Soderblom, L., Shirley, J., and the Galileo NIMS Team [2001]. Icarus 149, 107-132) is used to control the sublimated flux of SO2 which can result in inhomogeneous column densities that vary by nearly a factor of four for the same surface temperature. A short residence time for SO2 molecules on the “rock” component is found to smooth lateral atmospheric inhomogeneities caused by variations in the surface frost distribution, creating an atmosphere that looks nearly identical to one with uniform frost coverage. A longer residence time is found to agree better with mid-infrared observations (Spencer, J.R., Lellouch, E., Richter, M.J., López-Valverde, M.A., Jessup, K.L, Greathouse, T.K., Flaud, J. [2005]. Icarus 176, 283-304) and reproduce the observed anti-jovian/sub-jovian column density asymmetry. The computed peak dayside column density for Io assuming a surface frost temperature of 115 K agrees with those suggested by Lyman-α observations (Feaga, L.M., McGrath, M., Feldman, P.D. [2009]. Icarus 201, 570-584). On the other hand, the peak dayside column density at 120 K is a factor of five larger and is higher than the upper range of observations (Jessup, K.L., Spencer, J.R., Ballester, G.E., Howell, R.R., Roesler, F., Vigel, M., Yelle, R. [2004]. Icarus 169, 197-215; Spencer et al., 2005).  相似文献   
122.
MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg–akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 °C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 °C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153–839 K) of a 1 = 20(3) × 10?9 K?2 and a 0 = 17(2) × 10?6 K?1, with an average of α 0 = 27.1(6) × 10?6 K?1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch–Murnaghan equation of state (BM2 EoS) fitting yields: V 0 = 263.7(2) Å3, K T0 = 217(3) GPa (K′ fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: α a  = 8.2(3) and α c  = 10.68(9) (10?6 K?1); β a  = 11.4(3) and β c  = 15.9(3) (10?4 GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15–300 K and 0–28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between ?1.02 × 10?5 and +1.7 × 10?5 K?1, indicating both weak hydrogen bonds (O–H···O) and strong OH bonding due to long O···O distances.  相似文献   
123.
Indirect lines of evidence for fast axial rotation of WR stars are described, such as: a) elongated cavities around WRs; b) flattening of WR winds; c) solar-like flares of WRs; d) non-radial pulsations of the WR wind in the presence of a massive companion in a binary system.  相似文献   
124.
Ocean Dynamics - A Correction to this paper has been published: https: doi.org/10.1007/s10236-021-01463-y  相似文献   
125.
Abstract

A generalized two-disk dynamo model is considered that includes mechanical friction; this model is intended to simulate in its broad character the behavior of the geodynamo. Fixed points, limit cycles and chaotic attractors are located for different input parameters of the model. The chaotic regimes are of several kinds as are the “routes to chaos”. Several approximate models, helpful for studying the dynamo are discussed. A number of essential differences from the well-known Rikitake dynamo are demonstrated.  相似文献   
126.
127.
The seasonal and interannual variability of mesoscale circulation along the eastern coast of the Sakhalin Island in the Okhotsk Sea is investigated using the AVISO velocity field and oceanographic data for the period from 1993 to 2016. It is found that mesoscale cyclones with the horizontal dimension of about 100 km occur there predominantly during summer, whereas anticyclones occur predominantly during fall and winter. The cyclones are generated due to a coastal upwelling forced by northward winds and the positive wind stress curl along the Sakhalin coast. The anticyclones are formed due to an inflow of low-salinity Amur River waters from the Sakhalin Gulf intensified by southward winds and the negative wind stress curl in the cold season. The mesoscale cyclones support the high biological productivity at the eastern Sakhalin shelf in July– August.  相似文献   
128.
The goal of wave‐mode separation and wave‐vector decomposition is to separate a full elastic wavefield into three wavefields with each corresponding to a different wave mode. This allows elastic reverse‐time migration to handle each wave mode independently. Several of the previously proposed methods to accomplish this task require the knowledge of the polarisation vectors of all three wave modes in a given anisotropic medium. We propose a wave‐vector decomposition method where the wavefield is decomposed in the wavenumber domain via the analytical decomposition operator with improved computational efficiency using low‐rank approximations. The method is applicable for general heterogeneous anisotropic media. To apply the proposed method in low‐symmetry anisotropic media such as orthorhombic, monoclinic, and triclinic, we define the two S modes by sorting them based on their phase velocities (S1 and S2), which are defined everywhere except at the singularities. The singularities can be located using an analytical condition derived from the exact phase‐velocity expressions for S waves. This condition defines a weight function, which can be applied to attenuate the planar artefacts caused by the local discontinuity of polarisation vectors at the singularities. The amplitude information lost because of weighting can be recovered using the technique of local signal–noise orthogonalisation. Numerical examples show that the proposed approach provides an effective decomposition method for all wave modes in heterogeneous, strongly anisotropic media.  相似文献   
129.
The Late Paleozoic–Early Mesozoic Mongol-Okhotsk Ocean extended between the Siberian and Amur–North China continents.The timing and modalities of the oceanic closure are widely discussed.It is largely accepted that the ocean closed in a scissor-like manner from southwest to northeast(in modern coordinates),though the timing of this process remains uncertain.Recent studies have shown that both western(West Transbaikalia)and eastern(Dzhagda)parts of the ocean closed almost simultaneously at the Early–Middle Jurassic boundary.However,little information on the key central part of the oceanic suture zone is available.We performed U-Pb(LA-ICP-MS)dating of detrital zircon from wellcharacterized stratigraphic sections of the central part of the Mongol-Okhotsk suture zone.These include the initial marine and final continental sequences of the East Transbaikalia Basin,deposited on the northern Argun-Idemeg terrane basement.We provide new stratigraphic ages for the marine and continental deposits.This revised chronostratigraphy allows assigning an age of~165–155 Ma,to the collisionrelated flexure of the northern Argun-Idemeg terrane and the development of a peripheral foreland basin.This collisional process took place 5 to10 million years later than in the western and eastern parts of the ocean.We demonstrate that the northern Argun-Idemeg terrane was the last block to collide with the Siberian continent,challenging the widely supported scissor-like model of closure of the MongolOkhotsk Ocean.Different segments of the ocean closed independently,depending on the initial shape of the paleo continental margins.  相似文献   
130.
Abstract

We propose a method of derivation of global asymptotic solutions of the hydromagnetic dynamo problem at large magnetic Reynolds number. The procedure reduces to matching the local asymptotic forms for the magnetic field generated near individual extrema of generation strength. The basis of the proposed method, named here the Maximally-Efficient-Generation Approach (MEGA), is the assertion that properties of global asymptotic solutions of the kinematic dynamo are determined by the distribution of the generation strength near its leading extrema and by the number and distribution of the extrema.

The general method is illustrated by the global asymptotic solution of the α2-dynamo problem in a slab. The nature of oscillatory solutions revealed earlier in numerical simulations and the reasons for the dominance of even magnetic modes in slab geometry are clarified.

Applicability of the asymptotic solutions at moderate values of the asymptotic parameter is also discussed. We confirm this applicability using comparisons with complementary asymptotic expansions and numerical simulations. In particular, this justifies application of the MEGA solutions to estimation of the generation threshold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号