首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   235篇
  免费   2篇
  国内免费   10篇
测绘学   5篇
大气科学   7篇
地球物理   25篇
地质学   73篇
海洋学   22篇
天文学   79篇
综合类   6篇
自然地理   30篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2018年   15篇
  2017年   14篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   10篇
  2009年   11篇
  2008年   12篇
  2007年   17篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   10篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   4篇
  1996年   8篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1934年   1篇
排序方式: 共有247条查询结果,搜索用时 15 毫秒
61.
62.
63.
The high resolution laboratory spectrum of hot water vapour has been recorded in the 500–13 000 cm−1 wavenumber range and we report on the analysis of the 4750–13 000 cm−1 (0.769–2.1 μm) portion. The emission spectrum was recorded using an oxy-acetylene welding torch and a Fourier transform spectrometer. Line assignments in the laboratory spectrum as well as in an absorption spectrum of a sunspot umbra were made with the help of the BT2 line-list. Our torch spectrum is the first laboratory observation of the 9300 Å'steam bands' seen in M-stars and brown dwarfs.  相似文献   
64.
Hydrological Impacts of Climate Change on Inflows to Perth, Australia   总被引:2,自引:0,他引:2  
The effects of climate change due to increasing atmospheric CO2 onthe major tributaries to the Swan River (Perth, Western Australia) have been investigated. The climate scenarios are based on results from General Circulation Models (GCMs) and 1000 year time series are produced using a stochastic weather generator. The hydrological implications of these scenarios are then examined using a conceptual rainfall-runoff model, CMD-IHACRES, to model the response of six catchments, which combine to represent almost 90% of the total flow entering the upper Swan River,and hence the Perth city urban area. The changes in streamflow varies considerably between catchments, exhibiting a strong dependence on the physical attributes of the catchment in question. The increase in the magnitudes of rare flood events despite significant decreases in mean streamflow levels found in some catchments emphasizes the importance of estimating changes in the nature of the precipitation (variance, length of storm and interstorm periods), along with changes in the mean, in climate change scenarios.  相似文献   
65.
Post‐Late Paleozoic Collisional Framework of Southern Great Altai   总被引:1,自引:0,他引:1  
We outline the post-Late Paleozoic (latest Permian to Cenozoic) collisional framework of the southern Great Altai (Central Asia) produced by the convergence between the Tuva-Mongolia and Junggar continental terranes (microplates). The collisional structures in the region classified on the basis of their geometry and deformation style, dynamic metamorphism, and compositions of tectonites are of three main types: (1) mosaic terranes made up of large weakly deformed Paleozoic blocks separated by younger shear zones; (2) contractional deformation systems involving structures formed in post-Late Paleozoic time, parallel faults oriented along collisional deformation systems, and relict lenses of Paleozoic orogenic complexes; and (3) isolated zones of dynamic metamorphism composed mostly of collisional tectonites different in composition and alteration grade.  相似文献   
66.
Abstract: Age of magmatism and tin mineralization in the Khingan‐Okhotsk volcano–plutonic belt, including the Khingan, Badzhal and Komsomolsk tin fields, were reviewed in terms of tectonic history of the continental margin of East Asia. This belt consists mainly of felsic volcanic rocks and granitoids of the reduced type, being free of remarkable geomagnetic anomaly, in contrast with the northern Sikhote‐Alin volcano–plutonic belt dominated by oxidized‐type rocks and gold mineralization. The northern end of the Khingan‐Okhotsk belt near the Sea of Okhotsk, accompanied by positive geomagnetic anomalies, may have been overprinted by magmatism of the Sikhote‐Alin belt. Tin–associated magmatism in the Khingan‐Okhotsk belt extending over 400 km occurred episodically in a short period (9510 Ma) in the middle Cretaceous time, which is coeval with the accretion of the Kiselevka‐Manoma complex, the youngest accretionary wedge in the eastern margin of the Khingan‐Okhotsk accretionary terranes. The episodic magmatism is in contrast with the Cretaceous‐Paleogene long–lasted magmatism in Sikhote–Alin, indicating the two belts are essentially different arcs, rather than juxtaposed arcs derived from a single arc. The tin‐associated magmatism may have been caused by the subduction of a young and hot back‐arc basin, which is inferred from oceanic plate stratigraphy of the coeval accre‐tionary complex and its heavy mineral assemblage of immature volcanic arc provenance. The subduction of the young basin may have resulted in dominance of the reduced‐type felsic magmas due to incorporation of carbonaceous sediments within the accretionary complex near the trench. Subsequently, the back‐arc basin may have been closed by the oblique collision of the accretionary terranes in Sikhote–Alin, which was subjected to the Late Cretaceous to Paleogene magmatism related to another younger subduction system. These processes could have proceeded under transpressional tectonic regime due to oblique subduction of the paleo‐Pacific plates under Eurasian continent.  相似文献   
67.
The Neoproterozoic-Early Cambrian evolution of peri-Gondwanan terranes (e.g. Avalonia, Carolinia, Cadomia) along the northern (Amazonia, West Africa) margin of Gondwana provides insights into the amalgamation of West Gondwana. The main phase of tectonothermal activity occurred between ca. 640–540 Ma and produced voluminous arc-related igneous and sedimentary successions related to subduction beneath the northern Gondwana margin. Subduction was not terminated by continental collision so that these terranes continued to face an open ocean into the Cambrian. Prior to the main phase of tectonothermal activity, Sm-Nd isotopic studies suggest that the basement of Avalonia, Carolinia and part of Cadomia was juvenile lithosphere generated between 0.8 and 1.1 Ga within the peri-Rodinian (Mirovoi) ocean. Vestiges of primitive 760–670 Ma arcs developed upon this lithosphere are preserved. Juvenile lithosphere generated between 0.8 and 1.1 Ga also underlies arcs formed in the Brazilide Ocean between the converging Congo/São Francisco and West Africa/Amazonia cratons (e.g. the Tocantins province of Brazil). Together, these juvenile arc assemblages with similar isotopic characteristics may reflect subduction in the Mirovoi and Brazilide oceans as a compensation for the ongoing breakup of Rodinia and the generation of the Paleopacific. Unlike the peri-Gondwanan terranes, however, arc magmatism in the Brazilide Ocean was terminated by continent-continent collisions and the resulting orogens became located within the interior of an amalgamated West Gondwana. Accretion of juvenile peri-Gondwanan terranes to the northern Gondwanan margin occurred in a piecemeal fashion between 650 and 600 Ma, after which subduction stepped outboard to produce the relatively mature and voluminous main arc phase along the periphery of West Gondwana. This accretionary event may be a far-field response to the breakup of Rodinia. The geodynamic relationship between the closure of the Brazilide Ocean, the collision between the Congo/São Francisco and Amazonia/West Africa cratons, and the tectonic evolution of the peri-Gondwanan terranes may be broadly analogous to the Mesozoic-Cenozoic closure of the Tethys Ocean, the collision between India and Asia beginning at ca. 50 Ma, and the tectonic evolution of the western Pacific Ocean.  相似文献   
68.
Migration of trans-Neptunian objects under their mutual gravitation influence and the influence of the giant planets is investigated. These investigations are based on computer simulation results and on some formulas. We estimated that about 20 % of near-Earth objects with diameter d ≥ 1 km may have come from the Edgeworth-Kuiper belt. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号