首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   5篇
大气科学   6篇
地球物理   15篇
地质学   8篇
海洋学   7篇
天文学   2篇
  2023年   1篇
  2021年   4篇
  2020年   5篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2000年   1篇
排序方式: 共有38条查询结果,搜索用时 203 毫秒
31.
Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating Streamflow database, describes the linear relationship between monthly mean air temperature (ta) and ts. Multiple linear regression models are used to predict the slope (m) and intercept (b) of the ta–ts linear relation as a function of climatic, hydrologic and land cover characteristics. Model performance to predict ts resulted in a mean Nash–Sutcliffe efficiency coefficient of 0.78 across all sites. Application of the model to predict ts at additional 89 nonreference sites with a higher human alteration yielded a mean Nash–Sutcliffe value of 0.45. We also analysed seasonal thermal sensitivity (m) and found strong hysteresis in the ta–ts relation. Drainage area exerts a strong control on m in all seasons, whereas the cooling effect of groundwater was only evident for the spring and fall seasons. However, groundwater contributions are negatively related to mean ts in all seasons. Finally, we found that elevation and mean basin slope are negatively related to mean ts in all seasons, indicating that steep basins tend to stay cooler because of shorter residence times to gain heat from their surroundings. This model can potentially be used to predict climate change impacts on ts across the USA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
32.
Given the potential for a projected acceleration in sea-level rise to impact wetland sustainability over the next century, a better understanding is needed of climate-related drivers that influence the processes controlling wetland elevation. Changes in local hydrology and groundwater conditions can cause short-term perturbations to marsh elevation trends through shrink–swell of marsh soils. To better understand the magnitude of these perturbations and their impacts on marsh elevation trends, we measured vertical accretion and elevation dynamics in microtidal marshes in Texas and Louisiana during and after the extreme drought conditions that existed there from 1998 to 2000. In a Louisiana marsh, elevation was controlled by subsurface hydrologic fluxes occurring below the root zone but above the 4 m depth (i.e., the base of the surface elevation table benchmark) that were related to regional drought and local meteorological conditions, with marsh elevation tracking water level variations closely. In Texas, a rapid decline in marsh elevation was related to severe drought conditions, which lowered local groundwater levels. Unfragmented marshes experienced smaller water level drawdowns and more rapid marsh elevation recovery than fragmented marshes. It appears that extended drawdowns lead to increased substrate consolidation making it less resilient to respond to future favorable conditions. Overall, changes in water storage lead to rapid and large short-term impacts on marsh elevation that are as much as five times greater than the long-term elevation trend, indicating the importance of long-term, high-resolution elevation data sets to understand the prolonged effects of water deficits on marsh elevation change.  相似文献   
33.
The palaeontological sites of Riba de Santiuste and Sienes (Riba de Santiuste area) are located in the province of Guadalajara, Spain. They include a stratigraphic interval in Muschelkalk facies belonging to the “Cuesta del Castillo Sandstones” Formation and “Royuela Dolostones, Marls and Mudstones” Formation. These sites include numerous fossil plants, direct vertebrate remains, and vertebrate swim traces. The vertebrate remains correspond to a multitude of anatomical elements of Sauropterygia (Nothosauroidea, Placodontia) and possible Archosauria (Rauisuchia) remains. The fossil material attributed to nothosaurs includes teeth, coracoids, a thoracic vertebra, some isolated vertebral centra, humerus, rib fragments, and some dorsal and caudal vertebrae. The remains attributed to placodonts correspond to fragments of skull, quadrate, teeth and osteoderms. Other undetermined sauropterygian remains, such as ulnas, fragments of long bones, fragments of ribs, and articular facets of ribs have been also recovered. Additionally, a fragment of mandible and an intervertebral disk of indeterminate reptiles whose size could be compatible with archosaurs are also described. These bones are exceptionally well-preserved because the fossilization processes have preserved the microstructure of the tissues. The sites also show vertebrate traces, with parallel scratch impressions interpreted as swim traces. The relative stratigraphic position and the palaeontological content of these sites suggest a Ladinian age (Middle Triassic). The interpretation of the sedimentary facies here described also suggests that the sites could correspond to detrital-carbonate mixed deposits of coastal intertidal to supratidal environments.  相似文献   
34.
Spectra taken by Cassini’s Composite Infrared Spectrometer (CIRS) between 10 and 600 cm−1 (17-1000 μm) of surface thermal emission of Mimas, Enceladus, Tethys, Dione, Rhea and Iapetus have been used to derive the thermal inertia and bolometric Bond albedo values. Only an upper limit for the bolometric Bond albedo of Iapetus’ dark leading side could be determined due to the insensitivity of the thermal model to albedo when albedos are very low. The thermal inertia in this region however is better constrained. The CIRS coverage of Enceladus is extensive enough that the latitudinal variation in these values from 60°S to 70°N has been determined in 10° wide bins. The bolometric Bond albedos determined here are consistent with literature values which show the surface of the saturnian icy moons to be covered in ice contaminated to varying degrees. The thermal inertia of the moons is shown to be in the range 9-, approximately 2-6 times lower than that of the Galilean satellites, implying a less well consolidated and more porous surface. The thermal inertias of Iapetus and Phoebe are somewhat higher, suggesting that the very low thermal inertias of satellites from Rhea inwards may be related to their probable coating of E-ring material. Latitudinal variations on the surface of Enceladus show that the bolometric Bond albedo and thermal inertia increase towards the active plume source at the south pole.  相似文献   
35.
The palaeontological site of “Lo Hueco” was discovered in Cuenca, Spain, in 2007. It includes a stratigraphic interval in “Garumn” facies belonging to the upper part of the Villalba de la Sierra Formation. A succession of versicolor marly mudstone levels (V, G1, R1, G2, R2 and M) can be observed at the site studied. This succession is partially modified by a sandy channel structure (C) and by a sulphated interval (S). The C structure and the G1, G2 and R2 (lower part) levels have an extremely rich and varied fossil concentration and have provided to date more than 8500 macroremains. These are mainly from vertebrates, but also from plants and invertebrates. In general, vertebrates are represented by mineralized bones with an early infilling of gypsum, a ferruginous crust, and a secondary precipitation of gypsum; invertebrates by internal moulds; and plants by carbonized remains. Among the vertebrates, titanosaur dinosaurs (some of them with partially articulated skeletons) are by far the most common representatives, although lepisosteid fishes, bothremydid turtles, squamate lizards, eusuchian crocodiles, and ornithischian and theropod dinosaurs are also well represented. The relative stratigraphic position and the palaeontological content of this site allow to attribute it to the upper Campanian-lower Maastrichtian. Interpretation of its materials suggests a near coast muddy flood plain crossed by distributary sandy channels environment, exposed to brackish to fresh water aquatic influence.  相似文献   
36.
37.
Projections for South America of future climate change conditions in mean state and seasonal cycle for temperature during the twenty-first century are discussed. Our analysis includes one simulation of seven Atmospheric-Ocean Global Circulation Models, which participated in the Intergovernmental Panel on Climate Change Project and provided at least one simulation for the twentieth century (20c3m) and one simulation for each of three Special Report on Emissions Scenarios (SRES) A2, A1B, and B1. We developed a statistical method based on neural networks and Bayesian statistics to evaluate the models’ skills in simulating late twentieth century temperature over continental areas. Some criteria [model weight indices (MWIs)] are computed allowing comparing over such large regions how each model captures the temperature large scale structures and contributes to the multi-model combination. As the study demonstrates, the use of neural networks, optimized by Bayesian statistics, leads to two major results. First, the MWIs can be interpreted as optimal weights for a linear combination of the climate models. Second, the comparison between the neural network projection of twenty-first century conditions and a linear combination of such conditions allows the identification of the regions, which will most probably change, according to model biases and model ensemble variance. Model simulations in the southern tip of South America and along the Chilean and Peruvian coasts or in the northern coasts of South America (Venezuela, Guiana) are particularly poor. Overall, our results present an upper bound of potential temperature warming for each scenario. Spatially, in SRES A2, our major findings are that Tropical South America could warm up by about 4°C, while southern South America (SSA) would also undergo a near 2–3°C average warming. Interestingly, this annual mean temperature trend is modulated by the seasonal cycle in a contrasted way according to the regions. In SSA, the amplitude of the seasonal cycle tends to increase, while in northern South America, the amplitude of the seasonal cycle would be reduced leading to much milder winters. We show that all the scenarios have similar patterns and only differ in amplitude. SRES A1B differ from SRES A2 mainly for the late twenty-first century, reaching more or less an 80–90% amplitude compared to SRES A2. SRES B1, however, diverges from the other scenarios as soon as 2025. For the late twenty-first century, SRES B1 displays amplitudes, which are about half those of SRES A2.  相似文献   
38.
Stream temperature (Ts) is a key water quality parameter that controls several biological, ecological, and chemical processes in aquatic systems. In forested headwaters, exchanges of energy across air-water-streambed interfaces may influence Ts regimes, especially during storm events as the sources of runoff change over space and time. Analysis of the hysteretic behaviour of Ts during storm events may provide insights into rainfall-runoff responses, but such relationships have not been thoroughly investigated. As such, our objectives were to (a) quantify the variability of stream temperature hysteresis across seasons in different sub-regions and (b) investigate the relationship between the hysteretic response and catchment characteristics. Ts hysteresis during storm events was assessed based on the hysteresis index (HI), which describes the directionality of hysteresis loops, and the temperature response index (TRI), which indicates whether Ts increased or decreased during a storm event. We analysed Ts data from 10 forested headwater reaches in two sub-regions (McGarvey and West Fork Tectah) in Northern California. We also performed a clustering analysis to examine the relationship amongst HI, TRI, topographic metrics, and meteorological characteristics of the study areas. Overall, the hysteretic behaviour of Ts varied across seasons—the greatest HI occurred during spring and summer. Interestingly, in the McGarvey streams the variability in Ts hysteresis co-varied strongly with topographic metrics (i.e., upslope accumulative area, average channel slope, topographic wetness index). Comparatively, in West Fork Tectah the variability of Ts hysteresis co-varied most strongly with meteorological metrics (i.e., antecedent rainfall events, solar radiation, and air temperature). Variables such as the gradient between stream and air temperatures, slope, and wetted width were significant for both sub-regional hysteretic patterns. We posit that the drivers of Ts response during storms are likely dependent on catchment physiographic characteristics. Our study also illustrated the potential utility of stream temperature as a tracer for improving the understanding of hydrologic connectivity and shifts in the dominant runoff contributions to streamflow during storm events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号