首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   39篇
  国内免费   1篇
测绘学   18篇
大气科学   26篇
地球物理   149篇
地质学   177篇
海洋学   42篇
天文学   155篇
综合类   1篇
自然地理   53篇
  2022年   4篇
  2021年   9篇
  2020年   18篇
  2019年   10篇
  2018年   26篇
  2017年   18篇
  2016年   23篇
  2015年   14篇
  2014年   18篇
  2013年   35篇
  2012年   20篇
  2011年   36篇
  2010年   22篇
  2009年   36篇
  2008年   23篇
  2007年   31篇
  2006年   19篇
  2005年   21篇
  2004年   15篇
  2003年   23篇
  2002年   23篇
  2001年   22篇
  2000年   21篇
  1999年   13篇
  1998年   15篇
  1997年   7篇
  1996年   4篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   4篇
  1984年   9篇
  1983年   3篇
  1982年   8篇
  1981年   6篇
  1980年   6篇
  1979年   2篇
  1977年   3篇
  1976年   3篇
  1975年   9篇
  1974年   9篇
  1973年   4篇
  1972年   2篇
  1970年   2篇
  1968年   1篇
  1962年   1篇
排序方式: 共有621条查询结果,搜索用时 46 毫秒
11.
12.
This study examines the spatial and temporal variability of chemical denudation rates in Kärkevagge, northern Sweden. The chemical flux rates within the valley are strongly influenced by the local geology. Chemical denudation rates determined for the study period are more than double those previously reported in the literature for this valley. Rates of greater than 46t km−2 a−1 were measured at the valley mouth over the course of the melt season. This difference is likely due to differences in measurement technique compared to that used by past researchers. This rate is also much higher than for other arctic and alpine watersheds. Chemical denudation in Kärkevagge is comparable to larger temperate rivers. The rapid chemical denudation in Kärkevagge is likely due to sulfide weathering creating acid solutions.  相似文献   
13.
The second marvel to catch the eye of the visitor to Kärkevagge, after the impressive boulder deposit on the floor of the valley, is the series of prominent white stripes running down the valley's dark cliffs. Streams and springs descending the eastern flank of Kärkevagge are marked by the presence of whitish coatings on the black rock surfaces and on cobbles lining ephemeral waterways. These were referred to as 'lime crusts' by early investigators, but they are not reactive to HCl. We believe that they are a precipitate resulting from acid attack on the local rocks. Pyrite is common in many of the rocks in the valley and its oxidation produces sulfuric acid. As the dissolved mineral elements are carried in the drainage water, efflorescence forms on the surfaces where the water flows due to evaporation or to changes in temperature. The exact mineralogy of the white crusts is unknown, but the crusts are dominated by Al, S, and O, and in some cases by Ca, depending on the substrate and local conditions. Gypsum, illite, and chlorite have been identified by X–ray diffraction of some scrapings of white–coated rocks. However, we believe that some unidentified oxy–hydroxy aluminum sulfates make up the bulk of the precipitates.  相似文献   
14.
Vegetation, microclimate, seedling frequency, freezing tolerance, and cold acclimation were compared for seedlings of Artemisia tridentata collected from 1775, 2175, and 2575 m elevation in the eastern Sierra Nevada, California. Data were used to test the hypothesis that ecotypic differences in stress physiology are important for seedling survival along gradients from desert to montane ecosystems. The vegetation canopy cover and A. tridentata seedling frequency were greatest at 2575 m, compared to 1775 and 2175 m. Snow cover ameliorated temperatures near the soil surface for part of the winter and depth varied across elevations. Freezing tolerance was compared for seedlings maintained in growth chambers at day/night air temperatures of 25°C/15°C. The temperature at which electrolyte leakage and Photosystem II function (FV/FM) from leaves were half-maximum was approximately −13·5°C for leaves of seedlings from all three elevations. Shifting day/night air temperatures from 25°C/15°C to 15°C/5°C initiated about 1·5° of acclimation by plants from all three altitudes, with seedlings from the highest elevation exhibiting the greatest acclimation change. Measurements of ambient air and canopy temperatures at the three elevations indicated that wintertime average low temperatures were consistent with the measured degree of freezing tolerance. At small spatial scales used in this study, pollen and seed dispersal between study sites may have precluded resolution of ecotypic differences. Patterns of freezing tolerance and cold acclimation may depend on a combination of mesoclimate and microclimate temperatures, canopy cover, snow depth, and snow melt patterns.  相似文献   
15.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
16.
Habitat fragmentation in channel networks and riverine ecosystems is increasing globally due to the construction of barriers and river regulation. The resulting divergence from the natural state poses a threat to ecosystem integrity. Consequently, a trade‐off is required between the conservation of biodiversity in channel networks and socio‐economic factors including power generation, potable water supplies, fisheries, and tourism. Many of Scotland's rivers are regulated for hydropower generation but also support populations of Atlantic salmon (Salmo salar L.) that have high economic and conservation value. This paper investigates the use of connectivity metrics and weightings to assess the impact of river barriers (impoundments) associated with hydropower regulation on natural longitudinal channel connectivity for Atlantic salmon. We applied 2 different weighting approaches in the connectivity models that accounted for spatial variability in habitat quality for spawning and fry production and contrasted these models with a more traditional approach using wetted area. Assessments of habitat loss using the habitat quality weighted models contrasted with those using the less biologically relevant wetted area. This highlights the importance of including relevant ecological and hydrogeomorphic information in assessing regulation impacts on natural channel connectivity. Specifically, we highlight scenarios where losing a smaller area of productive habitat can have a larger impact on Atlantic salmon than losing a greater area of less suitable habitat. It is recommended that future channel connectivity assessments should attempt to include biologically relevant weightings, rather than relying on simpler metrics like wetted area which can produce misleading assessments of barrier impacts.  相似文献   
17.
Uncertainty of best management practice (BMP) performance in future climates is an important consideration for water resources managers. The objective of this study was to quantify the level of uncertainty in performance of seven agricultural BMPs due to climate change in reducing sediment, total nitrogen, and total phosphorus loads. The Soil and Water Assessment Tool coupled with mid‐21st century climate data from the Community Climate System Model were used to develop climate change scenarios for the Tuttle Creek Lake Watershed of Kansas and Nebraska. Uncertainty level of each BMP was determined using Latin Hypercube Sampling, a constrained Monte Carlo sampling technique. Samples were taken from distributions of several variables (monthly precipitation, temperature, CO2, and BMP implementation parameters). Cumulative distribution functions were constructed for each BMP, pollutant, and climate scenario combination. Results demonstrated that BMP performance uncertainty is amplified in the extreme climate scenario. Among BMPs, native grass replacement generally had higher uncertainty level but also had the greatest reductions. This study highlights the importance of incorporating uncertainty analysis into mitigation strategies aiming to reduce negative impacts of climate change on water resources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
18.
Dramatic increases in liquid biofuel production have led to concerns about associated impacts on food prices, with many modeling studies showing significant biofuel-related price inflation. In turn, by changing patterns of food demand, biofuel production may indirectly influence greenhouse gas emissions. We estimated changes to dietary energy (calorie) demand and greenhouse gas emissions embodied in average diets under different biofuel-related food-price scenarios for Brazil, China and the United States, using food-price projections and food-price elasticities. Average energy demand decreased in all countries, from about 40 kcal per person per day in Brazil under a moderate price inflation scenario – a reduction of 1% relative to the (2009) reference scenario – to nearly 300 per day in the United States with high price inflation – almost 8% of reference levels. However, emissions per calorie increased slightly in all three countries. In terms of total greenhouse gas emissions, the results are suggestive of overall reductions only in the United States, where average reductions ranged from about 40 to 110 kg of carbon dioxide equivalent emissions per person per year. In China, the direction of impact is unclear, but the net change is likely to be small. Brazilian results were sensitive to parameter values and the direction and magnitude of impact is therefore uncertain. Despite the uncertainty, even small changes (positive or negative) in individual dietary emissions can produce large changes at the population level, arguing for the inclusion of the dietary pathway in greenhouse gas accounting of liquid biofuels.  相似文献   
19.
20.
Mid-shelf sediments off the Oregon coast are characterized as fine sands that trap and remineralize phytodetritus leading to the consumption of significant quantities of dissolved oxygen. Sediment oxygen consumption (SOC) can be delayed from seasonal organic matter inputs because of a transient buildup of reduced constituents during periods of quiescent physical processes. Between 2009 and 2013, benthic oxygen exchange rates were measured using the noninvasive eddy covariance (EC) method five separate times at a single 80-m station. Ancillary measurements included in situ microprofiles of oxygen at the sediment–water interface, and concentration profiles of pore water nutrients and trace metals, and solid-phase organic C and sulfide minerals from cores. Sediment cores were also incubated to derive anaerobic respiration rates. The EC measurements were made during spring, summer, and fall conditions, and they produced average benthic oxygen flux estimates that varied between ?2 and ?15 mmol m?2 d?1. The EC oxygen fluxes were most highly correlated with bottom-sensed, significant wave heights (H s). The relationship with H s was used with an annual record of deepwater swell heights to predict an integrated oxygen consumption rate for the mid-shelf of 1.5 mol m?2 for the upwelling season (May–September) and 6.8 mol m?2 y?1. The annual prediction requires that SOC rates are enhanced in the winter because of sand filtering and pore water advection under large waves, and it counters budgets that assume a dominance of organic matter export from the shelf. Refined budgets will require winter flux measurements and observations from cross-shelf transects over multiple years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号