首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
测绘学   11篇
大气科学   1篇
地球物理   44篇
地质学   50篇
海洋学   9篇
天文学   2篇
自然地理   14篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   9篇
  2017年   12篇
  2016年   10篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   3篇
  2009年   7篇
  2008年   7篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有131条查询结果,搜索用时 718 毫秒
111.
Earthquake activity is monitored in real time at the Koyna reservoir in western India, beginning from August 2005 and successful short term forecasts have been made of M ∼ 4 earthquakes. The basis of these forecasts is the observation of nucleation that precedes such earthquakes. Here we report that a total of 29 earthquakes in the magnitude range of 3.5 to 5.1 occurred in the region during the period of August 2005 through May 2010. These earthquakes could broadly be put in three zones. Zone-A has been most active accounting for 18 earthquakes, while 5 earthquakes in Zone-B and 6 in Zone-C have occurred. Earthquakes in Zone-A are preceded by well defined nucleation, while it is not the case with zones B and C. This indicates the complexity of the earthquakes processes and the fact that even in a small seismically active area of only 20 km × 30 km earthquake forecast is difficult.  相似文献   
112.
This study attempts to assess the uncertainty in the hydrological impacts of climate change using a multi-model approach combining multiple emission scenarios, GCMs and conceptual rainfall-runoff models to quantify uncertainty in future impacts at the catchment scale. The uncertainties associated with hydrological models have traditionally been given less attention in impact assessments until relatively recently. In order to examine the role of hydrological model uncertainty (parameter and structural uncertainty) in climate change impact studies a multi-model approach based on the Generalised Likelihood Uncertainty Estimation (GLUE) and Bayesian Model Averaging (BMA) methods is presented. Six sets of regionalised climate scenarios derived from three GCMs, two emission scenarios, and four conceptual hydrological models were used within the GLUE framework to define the uncertainty envelop for future estimates of stream flow, while the GLUE output is also post processed using BMA, where the probability density function from each model at any given time is modelled by a gamma distribution with heteroscedastic variance. The investigation on four Irish catchments shows that the role of hydrological model uncertainty is remarkably high and should therefore be routinely considered in impact studies. Although, the GLUE and BMA approaches used here differ fundamentally in their underlying philosophy and representation of error, both methods show comparable performance in terms of ensemble spread and predictive coverage. Moreover, the median prediction for future stream flow shows progressive increases of winter discharge and progressive decreases in summer discharge over the coming century.  相似文献   
113.
As the Mesozoic sediments contribute most of the oil and gas reserves of the world, we present an integrated interpretation approach using magnetotellurics (MT) and surface geochemical prospecting studies to demarcate hydrocarbon prospective Gondwana (Mesozoic) formations underneath the Deccan flood basalts of Late Cretaceous age across Narmada-Tapti rift (between Bhusawal and Barwah) in Central India. The MT interpretation shows deep (∼5 km) basement structure between southern and central part of the MT profile however, it gradually becomes shallower to either ends of the profile with a predominant basement depth reduction in the northern end compared to the southern end. The geophysical results suggest thick (2-3.5 km) Mesozoic sediments in the area characterized by deep basement structure. The geochemical analysis of the near surface soil samples indicate higher concentrations of light gaseous hydrocarbons constituents over the area marked with thick sub-basalt Mesozoic formations. Analyses of the geochemical data imply that these hydrocarbons are genetically related, generated from a thermogenic source and these samples fall in the oil-producing zone. The temperature-depth estimations in the region supports favorable temperature conditions (80-120 °C) for oil generation at basement depths.  相似文献   
114.
115.
Carbon capture and storage is a viable greenhouse gas mitigation technology and the Sleipner CO2 sequestration site in the North Sea is an excellent example. Storage of CO2 at the Sleipner site requires monitoring over large areas, which can successfully be accomplished with time lapse seismic imaging. One of the main goals of CO2 storage monitoring is to be able to estimate the volume of the stored CO2 in the reservoir. This requires a parametrization of the subsurface as exact as possible. Here we use elastic 2D time‐domain full waveform inversion in a time lapse manner to obtain a P‐wave velocity constrain directly in the depth domain for a base line survey in 1994 and two post‐injection surveys in 1999 and 2006. By relating velocity change to free CO2 saturation, using a rock physics model, we find that at the considered location the aquifer may have been fully saturated in some places in 1999 and 2006.  相似文献   
116.
Output‐only modal identification is needed when only structural responses are available. As a powerful unsupervised learning algorithm, blind source separation (BSS) technique is able to recover the hidden sources and the unknown mixing process using only the observed mixtures. This paper proposes a new time‐domain output‐only modal identification method based on a novel BSS learning algorithm, complexity pursuit (CP). The proposed concept—independent ‘physical systems’ living on the modal coordinates—connects the targeted constituent sources (and their mixing process) targeted by the CP learning rule and the modal responses (and the mode matrix), which can then be directly extracted by the CP algorithm from the measured free or ambient system responses. Numerical simulation results show that the CP method realizes accurate and robust modal identification even in the closely spaced mode and the highly damped mode cases subject to non‐stationary ambient excitation and provides excellent approximation to the non‐diagonalizable highly damped (complex) modes. Experimental and real‐world seismic‐excited structure examples are also presented to demonstrate its capability of blindly extracting modal information from system responses. The proposed CP is shown to yield clear physical interpretation in modal identification; it is computational efficient, user‐friendly, and automatic, requiring little expertise interactions for implementations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
117.
During severe seismic events, structures designed according to current standards yield and develop inelastic deformations. While the acceleration responses are limited by the yielding strength, these structures develop permanent deformations (and possible damage) due to such yielding. Spectra developed for inelastic structures can help in determining the desired yield levels and the associated inelastic deformations. Some structures made of special materials or equipped with innovative structural systems may yield, but can recover the deformation upon unloading and, thus, may avoid permanent deformations. These structures are known as nonlinear elastic. Often the post yielding excursions are very large and may exceed their toughness (or deformability). By introducing damping in form of supplemental devices, it is possible to control such deformations and keep them within acceptable limits. Spectra for such nonlinear elastic structures and inelastic structures are developed herein, by considering both inherent and supplemental damping. The difference between the two types of damping is addressed both theoretically and numerically. Design examples of several simple structures using the newly developed spectra are presented, which illustrate the importance of lower strength and damping in these nonlinear elastic or inelastic systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
118.
Wide-angle multicomponent ocean-bottom cable (OBC) data should further enhance sub-basalt imaging by using both compressional and converted shear wavefields. The first step in analysing multicomponent OBC data is to decompose the recorded wavefields into pure P- and pure S-wavefields, and extract the upgoing P- and S-waves. This paper presents a new scheme to separate P- and S-wavefields from wide-angle multicomponent OBC data in the τp domain. By considering plane-wave components with a known horizontal slowness, the P- and S-wavefields are separated into the directions of observed P- and S-wave oscillations using the horizontal and vertical components of the data. The upgoing P- and S-waves are then extracted from the separated P- and S-wavefields. The parameters used in the separation are the seismic wave velocities and the density at the receiver location, which can be estimated from the first reflection phase observed on the horizontal and vertical components. Numerical tests on synthetic data for a plane-layered model show good performance and demonstrate the accuracy of the scheme. Separation of wavefields from a basalt model is performed using synthetic wide-angle multicomponent OBC data. The results show that both near-offset and wide-angle reflections and conversions from within and below basalt layers are enhanced and clearly identified on the separated wavefields.  相似文献   
119.
With the increase in the use of satellite-based navigation services, the forecasting of L band scintillation has turned out to be of paramount importance as it affects their accuracy and availability. Forecasting the time of occurrence or non-occurrence, strength and probable location of scintillation enables the service providers and users to take appropriate action to mitigate the effects and optimize the services. We use the recently developed method to retrieve TEC from the ionospheric correction data transmitted by the Indian satellite-based augmentation system (SBAS)–GAGAN. By making use of the established linear relation between the dusk time TEC and the maximum probable scintillation intensity (S4max), scintillation forecast maps have been generated as early as 1930 LT. The superposition of actual S4 measurements, obtained from the GAGAN network of receivers, on the forecasted S4max map shows that the actual measurements are less than the predicted S4max except on very few occasions. The potential of the simple technique to predict the 2 D maps of maximum probable scintillation index for the whole night has been demonstrated which with more refinements could evolve into a viable forecast or forewarning system.  相似文献   
120.
Water temperature influences most of the physical, chemical and biological properties of rivers. It plays an important role in the distribution of fish and the growth rates of many aquatic organisms. Therefore, a better understanding of the thermal regime of rivers is essential for the management of important fisheries resources. This study deals with the modelling of river water temperature using a new and simplified model based on the equilibrium temperature concept. The equilibrium temperature concept is an approach where the net heat flux at the water surface can be expressed by a simple equation with fewer meteorological parameters than required with traditional models. This new water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e., the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). A study of the long‐term thermal characteristics of these two rivers revealed that the greatest differences in water temperatures occurred during mid‐summer peak temperatures. Data from 1992 to 1994 were used for the model calibration, while data from 1995 to 1999 were used for the model validation. Results showed a slightly better agreement between observed and predicted water temperatures for Catamaran Brook during the calibration period, with a root‐mean‐square error (RMSE) of 1·10 °C (Nash coefficient, NTD = 0·95) compared to 1·45 °C for the Little Southwest Miramichi River (NTD = 0·94). During the validation period, RMSEs were calculated at 1·31 °C for Catamaran Brook and 1·55 °C for the Little Southwest Miramichi River. Poorer model performances were generally observed early in the season (e.g., spring) for both rivers due to the influence of snowmelt conditions, while late summer to autumn modelling performances showed better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号