首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   11篇
  国内免费   55篇
测绘学   7篇
大气科学   12篇
地球物理   31篇
地质学   241篇
海洋学   3篇
天文学   12篇
综合类   5篇
自然地理   6篇
  2022年   8篇
  2021年   4篇
  2020年   11篇
  2019年   10篇
  2018年   18篇
  2017年   15篇
  2016年   7篇
  2015年   16篇
  2014年   8篇
  2013年   23篇
  2012年   18篇
  2011年   17篇
  2010年   18篇
  2009年   15篇
  2008年   13篇
  2007年   6篇
  2006年   15篇
  2005年   9篇
  2004年   8篇
  2003年   9篇
  2002年   5篇
  2001年   11篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1971年   3篇
  1970年   1篇
排序方式: 共有317条查询结果,搜索用时 31 毫秒
181.
The hornblende-biotite gneisses of Central Kerala which cover approximately 490km2 exhibit schlieric and nebulitic structures, tending towards a homophanous nature and are classified here as diatexites. Mafic protoliths and restite biotite, each representing the refractory residuum of two independent partial melting episodes are widely present in the gneisses. The general mineral assemblage of the gneisses comprise quartz, K-feldspar, oligoclase, biotite and hornblende. Chemically, they are dominantly adamellitic and the behaviour of major and trace elements is consistent with a magmatic parentage. Based on petrochemical criteria, a two-stage evolution model is proposed here, which involves (i) partial melting of mafic granulites under high Archean geothermal gradients and generation of tonalite/trondhjemite through amphibole and plagioclase fractionation and (ii) partial melting and subsequent quartz-alkali feldspar fractionation of the tonalite/trondhjemite under amphibolite facies conditions with synchronous K-enrichment resulting in the diatectic adamellites.  相似文献   
182.
The potential of the atmosphere to disperse and dilute pollutants emitted into it by myriad sources, depends upon various factors such as wind, vertical mixing, inversion of temperature in the vertical, etc. A study of such parameters is attempted in the present article over south India. The spatial distribution of isothermals, inversions, lapse conditions, mixing heights and ventilation coefficients over south India is studied for the months of January, April, July and October, which are typical of winter, premonsoon, monsoon and post monsoon seasons, respectively. Diurnal variations are also studied.  相似文献   
183.
The Sino-Korean Craton (SKC) is an enigmatic block in the history of supercontinents older than Pangea. Its accretion to Eurasia and the effect of the broad region of Mesozoic–Cenozoic extension in northern Eurasia that crosses the eastern part of the SKC are among several problems that need to be resolved in understanding the configuration of SKC and the overprinting of earlier histories in this block. We present a synopsis of these problems and perspectives for future research.  相似文献   
184.
In a comprehensive U–Pb electron microprobe study of zircon and monazite from the khondalite belt of Trivandrum Block in southern Kerala, we present age data on five key metapelite locations (Nedumpara, Oottukuzhi, Kulappara, Poolanthara and Paranthal). The rocks here, characterized by the assemblage of garnet–sillimanite–spinel–cordierite–biotite–K–feldsapr–plagiocalse–quartz–graphite, have been subjected to granulite facies metamorphism under extreme thermal conditions as indicated by the stability of spinel + quartz and the presence of mesoperthites that equilibrated at ultrahigh-temperature (ca. 1000 °C) conditions. The oldest spot age of 3534 Ma comes from the core of a detrital zircon at Nedumpara and is by far the oldest age reported from this supracrustal belt. Regression of age data from several spot analyses in single zircons shows “isochrons” ranging from 3193 ± 72 to 2148 ± 94 Ma, indicating heterogeneous population of zircons derived from multiple provenance. However, majority of zircons from the various localities shows Neoproterozoic apparent ages with sharply defined peaks in individual localities, ranging between 644–746 Ma. The youngest zircon age of 483 Ma was obtained from the outermost rim of a grain that incorporates a relict core displaying ages in the range of 2061–2543 Ma.The cores of monazites also show apparent older ages of Palaeo-Mesoproterozoic range, which are mantled by late Neoproterozoic/Cambrian rims. The oldest monazite core has an apparent age of 2057 Ma. Extensive growth of new monazite during latest Neoproterozoic to Cambrian–Ordovician times is also displayed by grain cores with apparent ages up to 622 Ma. The homogeneous core of a sub-rounded monazite grain yielded a maximum age of 569 Ma, markedly younger than the 610 Ma age reported in a previous study from homogenous and rounded zircon core from a metapelite in Trivandrum Block. These younger ages from abraded grains that have undergone fluvial transport are interpreted to indicate that deposition within the khondalite belt was as young as, or later than, this range. Probability density plots indicate that majority of the monazite grain population belong to Late Proterozoic/Cambrian age (ca. 560–520 Ma) with major peaks defining sharp spikes in individual localities.The age data presented in this study indicate that the metasediments of the Trivandrum Block sourced from Archaean and Paleo-Mesoproterozoic crustal fragments that were probably assembled in older supercontinents like Ur and Columbia. The largest age population of zircons belong to the Neoproterozoic, and are obviously related to orogenies during the pre-assembly phase of Gondwana, possibly from terrains belonging to the East African Orogen. Several prominent age spikes within the broad late Neoproterozoic–Cambrian age range displayed by monazites denote the dynamic conditions and extreme thermal perturbations attending the birth of Gondwana. Our study further establishes the coherent link between India and Madagascar within the East Gondwana ensemble prior to the final assembly of the Gondwana supercontinent.  相似文献   
185.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   
186.
Post-collisional volcanic rocks of Mesozoic age occur in the regions adjacent to Gerze, part of the southern Qiangtang Terrane of northern Tibet, China. Geochronological, geochemical, and whole-rock Sr-Nd isotopic analyses were performed on the volcanic rocks to better characterize their emplacement age and models for their origin. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb zircon analyses yielded consistent ages ranging from 123.1±0.94 Ma to 124.5±0.89 Ma for six volcanic rocks from the study area. The intermediate volcanic rocks belong to the alkaline and sub-alkaline magma series in terms of K2O+Na2O contents (5.9%–9.0%), and to the shoshonitic and calc-alkaline series on the basis of their high K2O contents (1.4%–3.3%). The Gerze volcanic rocks are characterized by the enrichment of light rare earth elements [(La/Yb)N=34.9–49.5] and large–ion lithophile elements (e.g., Rb, Ba, Th, U, K, Pb, and Sr), slightly negative Eu anomalies (Eu/Eu*=0.19–0.24), and negative anomalies in high field strength elements (e.g., Nb, Ta, Hf and Ti), relative to primitive mantle. The samples show slightly elevated (87Sr/86Sr)i values that range from 0.7049 to 0.7057, and low εNd(t) values from ?0.89 to ?2.89. These results suggest that the volcanic rocks studied derived from a compositionally heterogeneous mantle source and that their parent magmas were basaltic. The more mafic, parental magmas to the Gerze volcanic rocks likely underwent fractional crystallization of clinopyroxene, hornblende, biotite, and potassium feldspar, during ascent, with little to no crustal contamination, prior to their eruption/emplacement. While these volcanic rocks exhibit geochemical signatures typical of magmas formed in a destructive plate-margin setting, it is plausible that their mantle source might also have acquired such characteristics in an earlier episode of subduction.  相似文献   
187.
Tectonic processes involving amalgamations of microblocks along zones of ocean closure represented by granite-greenstone belts(GGB) were fundamental in building the Earth's early continents. The crustal growth and cratonization of the North China Craton(NCC) are correlated to the amalgamation of microblocks welded by 2.75-2.6 Ga and ~2.5 Ga GGBs. The lithological assemblages in the GGBs are broadly represented by volcano-sedimentary sequences, subduction-collision related granitoids and bimodal volcanic rocks(basalt and dacite) interlayered with minor komatiites and calc-alkalic volcanic rocks(basalt, andesite and felsic rock). The geochemical features of meta-basalts in the major GGBs of the NCC display affinity with N-MORB, E-MORB, OIB and calc-alkaline basalt, suggesting that the microblocks were separated by oceanic realm. The granitoid rocks display arc signature with enrichment of LILE(K,Rb, Sr, Ba) and LREE, and depletion of HFSE(Nb, Ta, Th, U, Ti) and HREE, and fall in the VAG field. The major mineralization includes Neoarchean BIF-type iron and VMS-type Cu-Zb deposits and these,together with the associated supracrustal rocks possibly formed in back-arc basins or arc-related oceanic slab subduction setting with or without input from mantle plumes. The 2.75-2.60 Ga TTG rocks,komatiites, meta-basalts and metasedimentary rocks in the Yanlingguan GGB are correlated to the upwelling mantle plume with eruption close to the continental margin within an ocean basin. The volcanosedimentary rocks and granitoid rocks in the late Neoarchean GGBs display formation ages of 2.60-2.48 Ga, followed by metamorphism at 2.52-2.47 Ga, corresponding to a typical modern-style subduction-collision system operating at the dawn of Proterozoic. The late Neoarchean komatiite(Dongwufenzi GGB), sanukitoid(Dongwufenzi GGB and Western Shandong GGB), BIF(Zunhua GGB) and VMS deposit(Hongtoushan-Qingyuan-Helong GGB) have closer connection to a combined process of oceanic slab subduction and mantle plume. The Neoarchean cratonization of the NCC appears to have involved two stages of tectonic process along the 2.75-2.6 Ga GGB and ~2.5 Ga GGBs, the former involve plume-arc interaction process, and the latter involving oceanic lithospheric subduction, with or without arcplume interaction.  相似文献   
188.
When plate tectonics began on the Earth has been long debated and here we argue this topic based on the records of Earth-Moon geology and asteroid belt to conclude that the onset of plate tectonics was during the middle Hadean(4.37-4.20 Ga). The trigger of the initiation of plate tectonics is the ABEL Bombardment, which delivered oceanic and atmospheric components on a completely dry reductive Earth, originally comprised of enstatite chondrite-like materials. Through the accretion of volatiles, shock metamorphism processed with vaporization of both CI chondrite and supracrustal rocks at the bombarded location, and significant recrystallization went through under wet conditions, caused considerable eclogitization in the primordial continents composed of felsic upper crust of 21 km thick anorthosite, and 50 km or even thicker KREEP lower crust. Eclogitization must have yielded a powerful slab-pull force to initiate plate tectonics in the middle Hadean. Another important factor is the size of the bombardment. By creating Pacific Ocean class crater by 1000 km across impactor, rigid plate operating stagnant lid tectonics since the early Hadean was severely destroyed, and oceanic lithosphere was generated to have bi-modal lithosphere on the Earth to enable the operation of plate tectonics.Considering the importance of the ABEL Bombardment event which initiated plate tectonics including the appearance of ocean and atmosphere, we propose that the Hadean Eon can be subdivided into three periods:(1) early Hadean(4.57-4.37 Ga),(2) middle Hadean(4.37-4.20 Ga), and(3) late Hadean(4.20-4.00 Ga).  相似文献   
189.
The Lützow-Holm Complex(LHC) of East Antarctica has been regarded as a collage of Neoarchean(ca.2.5 Ga), Paleoproterozoic(ca. 1.8 Ga), and Neoproterozoic(ca. 1.0 Ga) magmatic arcs which were amalgamated through the latest Neoproterozoic collisional events during the assembly of Gondwana supercontinent. Here, we report new geochronological data on detrital zircons in metasediments associated with the magmatic rocks from the LHC, and compare the age spectra with those in the adjacent terranes for evaluating the tectonic correlation of East Antarctica and Sri Lanka. Cores of detrital zircon grains with high Th/U ratio in eight metasediment samples can be subdivided into two dominant groups:(1) late Meso-to Neoproterozoic(1.1-0.63 Ga) zircons from the northeastern part of the LHC in Prince Olav Coast and northern Soya Coast areas, and(2) dominantly Neoarchean to Paleoproterozoic(2.8-2.4 Ga) zircons from the southwestern part of the LHC in southern Lutzow-Holm Bay area. The ca.1.0 Ga and ca. 2.5 Ga magmatic suites in the LHC could be proximal provenances of the detrital zircons in the northeastern and southwestern LHC, respectively. Subordinate middle to late Mesoproterozoic(1.3-1.2 Ga) detrital zircons obtained from Akarui Point and Langhovde could have been derived from adjacent Gondwana fragments(e.g., Rayner Complex, Eastern Ghats Belt). Meso-to Neoproterozoic domains such as Vijayan and Wanni Complexes of Sri Lanka, the southern Madurai Block of southern India, and the central-western Madagascar could be alternative distal sources of the late Meso-to Neoproterozoic zircons. Paleo-to Mesoarchean domains in India, Africa, and Antarctica might also be distal sources for the minor ~2.8 Ga detrital zircons from Skallevikshalsen. The detrital zircons from the Highland Complex of Sri Lanka show similar Neoarchean to Paleoproterozoic(ca. 2.5 Ga) and Neoproterozoic(ca. 1.0 Ga) ages, which are comparable with those of the LHC, suggesting that the two complexes might have formed under similar tectonic regimes. We consider that the Highland Complex and metasedimentary unit of the LHC formed a unified latest Neoproterozoic suture zone with a large block of northern LH-Vijayan Complex caught up as remnant of the ca. 1.0 Ga magmatic arc.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号