首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   518篇
  免费   33篇
  国内免费   14篇
测绘学   12篇
大气科学   71篇
地球物理   135篇
地质学   201篇
海洋学   31篇
天文学   68篇
综合类   3篇
自然地理   44篇
  2023年   4篇
  2022年   2篇
  2021年   18篇
  2020年   18篇
  2019年   18篇
  2018年   21篇
  2017年   18篇
  2016年   27篇
  2015年   25篇
  2014年   28篇
  2013年   32篇
  2012年   29篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   27篇
  2007年   26篇
  2006年   14篇
  2005年   8篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   8篇
  2000年   2篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1986年   1篇
  1985年   5篇
  1984年   5篇
  1983年   8篇
  1982年   11篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   2篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1960年   1篇
排序方式: 共有565条查询结果,搜索用时 31 毫秒
501.
502.
Apatite U-Pb thermochronology was applied to granitoid basement samples across the northern Gawler Craton to unravel the Proterozoic, post-orogenic, cooling history and to examine the role of major fault zones during cooling. Our observations indicate that cooling following the ~2500 Ma Sleaford Orogeny and ~1700 Ma Kimban Orogeny is restricted to the Christie and Wilgena Domains of the central northern Gawler Craton. The northern Gawler Craton mainly records post-Hiltaba Event(~1590 Ma) U-Pb cooling ages. Cooling following the ~1560 Ma Kararan Orogeny is preserved within the Coober Pedy Ridge,Nawa Domain and along major shear zones within the south-western Fowler Domain. The Nawa Domain samples preserve U-Pb cooling ages that are 150 Ma younger than the samples within the Coober Pedy Ridge and Fowler Domain, indicating that later(~1300 Ma) fault movement within the Nawa Domain facilitated cooling of these samples, caused by arc collision in the Madura Province of eastern Western Australia. When compared to~(40)Ar/~(39) Ar from muscovite, biotite and hornblende, our new apatite U-Pb ages correlate well, particularly in regions of higher data density. Our data also preserve a progressive younging of U-Pb ages from the nucleus of the craton to the periphery with a stark contrast in U-Pb ages across major structures such as the Karari Shear Zone and the Southern Overthrust, which indicates the timing of reactivation of these major crustal structures. Although this interpolation was based solely on thermochronological data and did not take into account structural or other geological data, these maps are consistent with the structural architecture of the Gawler Craton and reveal the thermal footprint of known tectonic and magmatic events in the Gawler Craton.  相似文献   
503.
We undertook a boat expedition to explore the geological framework of a very remote, lesser-known island, in the Chilean Patagonia: the Diego de Almagro Island(latitude S51°330'). This uninhabited, ca.400 km~2 Island is one of the very rare exposures of the Mesozoic accretionary subduction complex along the Chilean margin. Unstable weather, strong winds, steep topography, and very dense vegetation make an on-land mission difficult. Careful preparation based on high-resolution satellite images is advised to optimize shore access and minimize risks of injury. Despite a relatively important degree of regional reequilibration of metamorphic assemblages due to sluggish exhumation through the forearc crust, our results have shown that the island is composed of a nappe stack of ocean-floor derived slivers of metasedimentary units that exhibit very different pressure-temperature-time paths during burial by subduction under the Chilean margin and subsequent exhumation. These rocks are witness to a complex thermal evolution of the subduction zone between Jurassic and Cretaceous times from granulite facies to blueschist facies conditions as well as multiple episodes of accretion at ca. 35 -40 km in depth for almost100 Ma over the Mesozoic era.  相似文献   
504.
Natural Hazards - Process-based hydrological models are of great importance to understand hydrological processes and support decision making. The LImburg Soil Erosion Model (LISEM) requires...  相似文献   
505.
506.
507.
Chloride concentrations in waterways of northern USA are increasing at alarming rates and road salt is commonly assumed to be the cause. However, there are additional sources of Cl in metropolitan areas, such as treated wastewater (TWW) and water conditioning salts, which may be contributing to Cl loads entering surface waters. In this study, the potential sources of Cl and Cl loads in the Illinois River Basin from the Chicago area to the Illinois River’s confluence with the Mississippi River were investigated using halide data in stream samples and published Cl and river discharge data. The investigation showed that road salt runoff and TWW from the Chicago region dominate Cl loads in the Illinois Waterway, defined as the navigable sections of the Illinois River and two major tributaries in the Chicago region. Treated wastewater discharges at a relatively constant rate throughout the year and is the primary source of Cl and other elements such as F and B. Chloride loads are highest in the winter and early spring as a result of road salt runoff which can increase Cl concentrations by up to several hundred mg/L. Chloride concentrations decrease downstream in the Illinois Waterway due to dilution, but are always elevated relative to tributaries downriver from Chicago. The TWW component is especially noticeable downstream under low discharge conditions during summer and early autumn when surface drainage is at a minimum and agricultural drain tiles are not flowing.  相似文献   
508.
Ophiolites are key components of the Neoproterozoic Arabian–Nubian Shield (ANS). Understanding when they formed and were emplaced is crucial for understanding the evolution of the ANS because their ages tell when seafloor spreading and terrane accretion occurred. The Yanbu–Onib–Sol Hamed–Gerf–Allaqi–Heiani (YOSHGAH) suture and ophiolite belt can be traced  600 km across the Nubian and Arabian shields. We report five new SHRIMP U–Pb zircon ages from igneous rocks along the Allaqi segment of the YOSHGAH suture in southernmost Egypt and use these data in conjunction with other age constraints to evaluate YOSHGAH suture evolution. Ophiolitic layered gabbro gave a concordia age of 730 ± 6 Ma, and a metadacite from overlying arc-type metavolcanic rocks yielded a weighted mean 206Pb/238U age of 733 ± 7 Ma, indicating ophiolite formation at  730 Ma. Ophiolite emplacement is also constrained by intrusive bodies: a gabbro yielded a concordia age of 697 ± 5 Ma, and a quartz-diorite yielded a concordia age of 709 ± 4 Ma. Cessation of deformation is constrained by syn- to post-tectonic granite with a concordia age of 629 ± 5 Ma. These new data, combined with published zircon ages for ophiolites and stitching plutons from the YOSHGAH suture zone, suggest a 2-stage evolution for the YOSHGAH ophiolite belt ( 810–780 Ma and  730–750 Ma) and indicate that accretion between the Gabgaba–Gebeit–Hijaz terranes to the south and the SE Desert–Midyan terranes to the north occurred as early as 730 Ma and no later than 709 ± 4 Ma.  相似文献   
509.
The metasomatism observed in the oceanic and continental lithosphere is generally interpreted to represent a continuous differentiation process forming anhydrous and hydrous veins plus a cryptic enrichment in the surrounding peridotite. In order to constrain the mechanisms of vein formation and potentially clarify the nature and origin of the initial metasomatic agent, we performed a series of high-pressure experiments simulating the liquid line of descent of a basanitic magma differentiating within continental or mature oceanic lithosphere. This series of experiments has been conducted in an end-loaded piston cylinder apparatus starting from an initial hydrous ne-normative basanite at 1.5 GPa and temperature varying between 1,250 and 980°C. Near-pure fractional crystallization process was achieved in a stepwise manner in 30°C temperature steps and starting compositions corresponding to the liquid composition of the previous, higher-temperature glass composition. Liquids evolve progressively from basanite to peralkaline, aluminum-rich compositions without significant SiO2 variation. The resulting cumulates are characterized by an anhydrous clinopyroxene + olivine assemblage at high temperature (1,250–1,160°C), while at lower temperature (1,130–980°C), hydrous cumulates with dominantly amphibole + minor clinopyroxene, spinel, ilmenite, titanomagnetite and apatite (1,130–980°C) are formed. This new data set supports the interpretation that anhydrous and hydrous metasomatic veins could be produced during continuous differentiation processes of primary, hydrous alkaline magmas at high pressure. However, the comparison between the cumulates generated by the fractional crystallization from an initial ne-normative liquid or from hy-normative initial compositions (hawaiite or picrobasalt) indicates that for all hydrous liquids, the different phases formed upon differentiation are mostly similar even though the proportions of hydrous versus anhydrous minerals could vary significantly. This suggests that the formation of amphibole-bearing metasomatic veins observed in the lithospheric mantle could be linked to the differentiation of initial liquids ranging from ne-normative to hy-normative in composition. The present study does not resolve the question whether the metasomatism observed in lithospheric mantle is a precursor or a consequence of alkaline magmatism; however, it confirms that the percolation and differentiation of a liquid produced by a low degree of partial melting of a source similar or slightly more enriched than depleted MORB mantle could generate hydrous metasomatic veins interpreted as a potential source for alkaline magmatism by various authors.  相似文献   
510.
Lahars are among the most hazardous mass flow processes on earth and have caused up to 23 000 casualties in single events in the recent past. The Cotopaxi volcano, 60 km southeast of Quito, has a well-documented history of massively destructive lahars and is a hotspot for future lahars due to (i) its ~10 km2 glacier cap, (ii) its 117–147-year return period of (Sub)-Plinian eruptions, and (iii) the densely populated potential inundation zones (300 000 inhabitants). Previous mechanical lahar models often do not (i) capture the steep initial lahar trajectory, (ii) reproduce multiple flow paths including bifurcation and confluence, and (iii) generate appropriate key parameters like flow speed and pressure at the base as a measure of erosion capacity. Here, we back-calculate the well-documented 1877 lahar using the RAMMS debris flow model with an implemented entrainment algorithm, covering the entire lahar path from the volcano edifice to an extent of ~70 km from the source. To evaluate the sensitivity and to constrain the model input range, we systematically explore input parameter values, especially the Voellmy–Salm friction coefficients μ and ξ. Objective selection of the most likely parameter combinations enables a realistic and robust lahar hazard representation. Detailed historic records for flow height, flow velocity, peak discharge, travel time and inundation limits match best with a very low Coulomb-type friction μ (0.0025–0.005) and a high turbulent friction ξ (1000–1400 m/s2). Finally, we apply the calibrated model to future eruption scenarios (Volcanic Explosivity Index = 2–3, 3–4, >4) at Cotopaxi and accordingly scaled lahars. For the first time, we anticipate a potential volume growth of 50–400% due to lahar erosivity on steep volcano flanks. Here we develop a generic Voellmy–Salm approach across different scales of high-magnitude lahars and show how it can be used to anticipate future syneruptive lahars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号