首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   525篇
  免费   25篇
  国内免费   14篇
测绘学   13篇
大气科学   70篇
地球物理   134篇
地质学   201篇
海洋学   31篇
天文学   68篇
综合类   3篇
自然地理   44篇
  2023年   4篇
  2022年   2篇
  2021年   18篇
  2020年   19篇
  2019年   18篇
  2018年   21篇
  2017年   18篇
  2016年   27篇
  2015年   24篇
  2014年   27篇
  2013年   31篇
  2012年   29篇
  2011年   42篇
  2010年   27篇
  2009年   25篇
  2008年   27篇
  2007年   26篇
  2006年   16篇
  2005年   8篇
  2004年   13篇
  2003年   11篇
  2002年   5篇
  2001年   8篇
  2000年   2篇
  1999年   7篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   5篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   10篇
  1981年   6篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   6篇
  1975年   2篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1960年   1篇
  1957年   1篇
排序方式: 共有564条查询结果,搜索用时 15 毫秒
281.
In this study, the Land Use Dynamic Simulator model was applied to investigate the impact of farm credit as an adaptation strategy to cope with effects of climate variability on agricultural land‐use change and crop production in the Vea watershed in Ghana. The authors identified the determinants of crop choices within the landscape (e.g., farm household and biophysical characteristics of farm plot). The crop choice sub‐model was then linked to the crop yield sub‐model to determine the yields of selected crops. In adapting to the impacts of climate variability, the maize credit adoption sub‐model under the maize cultivation credit scenario was integrated into decision‐making. This was simulated for a 20‐year period, and compared with the business‐as‐usual scenario. Under the simulated maize credit scenario, maize adopters increased from about 20 per cent to about 50 per cent and the area allocated for maize cultivation significantly increased by about 266 per cent. Consequently, the average annual aggregated household crop yield increased by 6.3 per cent higher than in the business‐as‐usual scenario. This simulation study shows that access to maize credit can significantly influence agricultural land‐use change and food availability in the study area. However, although access to farm credit may translate into food availability, the sustainability of this strategy is questionable.  相似文献   
282.
Effects of global irrigation on the near-surface climate   总被引:3,自引:0,他引:3  
Irrigation delivers about 2,600 km3 of water to the land surface each year, or about 2% of annual precipitation over land. We investigated how this redistribution of water affects the global climate, focusing on its effects on near-surface temperatures. Using the Community Atmosphere Model (CAM) coupled to the Community Land Model (CLM), we compared global simulations with and without irrigation. To approximate actual irrigation amounts and locations as closely as possible, we used national-level census data of agricultural water withdrawals, disaggregated with maps of croplands, areas equipped for irrigation, and climatic water deficits. We further investigated the sensitivity of our results to the timing and spatial extent of irrigation. We found that irrigation alters climate significantly in some regions, but has a negligible effect on global-average near-surface temperatures. Irrigation cooled the northern mid-latitudes; the central and southeast United States, portions of southeast China and portions of southern and southeast Asia cooled by ~0.5 K averaged over the year. Much of northern Canada, on the other hand, warmed by ~1 K. The cooling effect of irrigation seemed to be dominated by indirect effects like an increase in cloud cover, rather than by direct evaporative cooling. The regional effects of irrigation were as large as those seen in previous studies of land cover change, showing that changes in land management can be as important as changes in land cover in terms of their climatic effects. Our results were sensitive to the area of irrigation, but were insensitive to the details of irrigation timing and delivery.  相似文献   
283.
284.
The δ O18 and δ Si30 analyses of the Luna 20 soil sample are +6.18 and +0.22, respectively, relative to the SMOW and Rose Quartz standards. However, an anomalous δ O18 value of +8.13 was obtained on one aliquot of the Luna 20 sample. Possible reasons for this apparently erroneous result are discussed.  相似文献   
285.
286.
287.
288.
Mathematical Geosciences - Sedimentary deposits constitute the primary record of changing environmental conditions that have acted on Earth’s surface over geologic time. Clastic material is...  相似文献   
289.
In this paper we present a deep learning (U-Net)-based workflow for classifying linear dune landforms based on the discrete Laplacian convolution of a new global elevation dataset, the AW3D30 digital surface model. Crest vectors were then derived for landscape pattern analysis. The U-Net crest classification model was trained and evaluated on sample data from dunefields across the Australian continent. The resulting crest vectors and dune defect placement were then evaluated in typical semi-arid and arid dune landscapes in eastern central Australia where high-resolution (5 m horizontal) digital elevation models are available (for three out of our four study sites) as a reference dataset. The method was applied to quantify dune pattern metrics for the entire Simpson Desert dunefield, Australia. The U-Net does a very good job of segmenting dune crests, even where dunes are less clear in the Laplacian map (intersection over union score ≈ 0.68). When crest vectors and dune defects (network nodes) were derived, the defect predictions were typically correct (0.4 to 0.79 correctness) but incomplete (0.02 to 0.64 completeness). Much of the residual error was traced to the resolution of the input data. Through the application to the Simpson Desert, we nevertheless demonstrated that our method can effectively be used for regional-scale dune pattern analysis. Furthermore, we suggest that the combination of morphological filtering and a convolutional neural network could readily be adapted to target other geomorphic features, such as channel networks or geological lineaments. © 2020 John Wiley & Sons, Ltd.  相似文献   
290.
Climate change is altering river temperature regimes, modifying the dynamics of temperature‐sensitive fishes. The ability to map river temperature is therefore important for understanding the impacts of future warming. Thermal infrared (TIR) remote sensing has proven effective for river temperature mapping, but TIR surveys of rivers remain expensive. Recent drone‐based TIR systems present a potential solution to this problem. However, information regarding the utility of these miniaturised systems for surveying rivers is limited. Here, we present the results of several drone‐based TIR surveys conducted with a view to understanding their suitability for characterising river temperature heterogeneity. We find that drone‐based TIR data are able to clearly reveal the location and extent of discrete thermal inputs to rivers, but thermal imagery suffers from temperature drift‐induced bias, which prevents the extraction of accurate temperature data. Statistical analysis of the causes of this drift reveals that drone flight characteristics and environmental conditions at the time of acquisition explain ~66% of the variance in TIR sensor drift. These results shed important light on the factors influencing drone‐based TIR data quality and suggest that further technological development is required to enable the extraction of robust river temperature data. Nonetheless, this technology represents a promising approach for augmenting in situ sensor capabilities and improved quantification of advective inputs to rivers at intermediate spatial scales between point measurements and “conventional” airborne or satellite remote sensing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号