首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3653篇
  免费   1037篇
  国内免费   29篇
测绘学   94篇
大气科学   43篇
地球物理   2058篇
地质学   1473篇
海洋学   235篇
天文学   538篇
综合类   7篇
自然地理   271篇
  2024年   1篇
  2023年   2篇
  2022年   10篇
  2021年   45篇
  2020年   64篇
  2019年   209篇
  2018年   226篇
  2017年   315篇
  2016年   357篇
  2015年   357篇
  2014年   396篇
  2013年   459篇
  2012年   319篇
  2011年   290篇
  2010年   271篇
  2009年   173篇
  2008年   232篇
  2007年   171篇
  2006年   126篇
  2005年   120篇
  2004年   99篇
  2003年   117篇
  2002年   99篇
  2001年   93篇
  2000年   89篇
  1999年   16篇
  1998年   3篇
  1997年   5篇
  1996年   6篇
  1995年   2篇
  1994年   4篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   3篇
  1970年   3篇
排序方式: 共有4719条查询结果,搜索用时 46 毫秒
51.
Biaxial test simulations using a packing of polygonal particles   总被引:1,自引:0,他引:1  
The mechanical response of cohesionless granular materials under monotonic loading is studied by performing molecular dynamic simulations. The diversity of shapes of soil grains is modelled by using randomly generated convex polygons as granular particles. Results of the biaxial test obtained for dense and loose media show that samples achieve the same void ratio at large strains independent of their initial density state. This limit state resembles the so‐called critical state of soil mechanics, except for some stress fluctuations, which remain for large deformations. These fluctuations are studied at the micro‐mechanical level, by following the evolution of the co‐ordination number, force chains and the fraction of the sliding contacts of the sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
52.
Scholars have long discussed the introduction and spread of iron metallurgy in different civilizations. The sporadic use of iron has been reported in the Eastern Mediterranean area from the late Neolithic period to the Bronze Age. Despite the rare existence of smelted iron, it is generally assumed that early iron objects were produced from meteoritic iron. Nevertheless, the methods of working the metal, its use, and diffusion are contentious issues compromised by lack of detailed analysis. Since its discovery in 1925, the meteoritic origin of the iron dagger blade from the sarcophagus of the ancient Egyptian King Tutankhamun (14th C. BCE) has been the subject of debate and previous analyses yielded controversial results. We show that the composition of the blade (Fe plus 10.8 wt% Ni and 0.58 wt% Co), accurately determined through portable x‐ray fluorescence spectrometry, strongly supports its meteoritic origin. In agreement with recent results of metallographic analysis of ancient iron artifacts from Gerzeh, our study confirms that ancient Egyptians attributed great value to meteoritic iron for the production of precious objects. Moreover, the high manufacturing quality of Tutankhamun's dagger blade, in comparison with other simple‐shaped meteoritic iron artifacts, suggests a significant mastery of ironworking in Tutankhamun's time.  相似文献   
53.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
54.
Large‐scale soft‐sediment deformation structures occur within fluvial sandstone bodies of the Upper Cretaceous Wahweap Formation in the Kaiparowits basin, southern Utah, USA. These structures represent an exceptional example of metre‐scale fault‐proximal, seismogenic load structures in nearly homogenous sandstones. The load structures consist of two types: large‐scale load casts and wedge‐shaped load structures. Large‐scale load casts penetrate up to 4·5 m into the underlying sandstone bed. Wedge‐shaped load structures include metre‐scale, parallel, sub‐vertical features and decimetre‐scale features along the periphery of the large‐scale load casts or other wedge‐shaped load structures. Wedge‐shaped load structures contain well‐developed, medial cataclastic shear deformation bands. All load structures contain pervasive well‐defined millimetre‐thick to centimetre‐thick internal laminae, oriented parallel to the outside form of the load structures and asymptotic to deformation bands. Both types of load structures formed because of an inverted density profile, earthquake‐triggered liquefaction and growth of irregularities (a Rayleigh–Taylor instability) on the sandstone–sandstone erosional contact. The internal laminae and deformation bands formed during deformation and clearly demonstrate polyphase deformation, recording a transition from liquefied to hydroplastic to brittle modes of deformation. Decimetre‐scale wedge‐shaped load structures on the edge of the large‐scale load casts probably formed towards the end of a seismic event after the sediment dewatered and increased the frictional contact of grains enough to impart strength to the sands. Metre‐scale wedge‐shaped load structures were created as the tips of downward foundering sediments were driven into fractures, which widened incrementally with seismic pulsation. With each widening of the fracture, gravity and a suction effect would draw additional sediment into the fracture. Superimposed laminae indicate a secondary syndeformational origin for internal laminae, probably by flow‐generated shearing and vibrofluidization mechanisms. Large‐scale and wedge‐shaped load structures, polyphase deformation and secondary laminae may characterize soft‐sediment deformation in certain fault‐proximal settings.  相似文献   
55.
Fossil wood     
Plants have been making wood (secondary xylem) for more than 370 million years. This familiar material is one of the keys to their massive success. Wood allows plants to attain breathtaking heights and maximize the capture of sunlight for growth. By creating complex, multi‐layered forests, the evolution of wood, has done more to shape life on land than almost any other innovation. Wood is one of the most common terrestrial fossils encountered in the geological record. Whether preserved as huge petrified logs or as minute chunks of charcoal, fossil wood is abundant in rocks of Late Devonian age and younger. It is of enormous scientific importance, shedding light on the identity and stature of ancient trees. As a record of growth over a sustained period, it also tells us much about the climates and environments in which those trees lived. In this article, I explain some aspects of the origin, evolution, preservation, and identification of fossil wood, and emphasise its great significance for geology.  相似文献   
56.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
57.
The response of low‐ductility reinforced concrete (RC) frames, designed typically for a non‐seismic region, subjected to two frequencies of base excitations is studied. Five half‐scaled, two‐bay, two‐storey, RC frames, each approximately 5 m wide by 3.3 m high, were subjected to both horizontal and/or vertical base excitations with a frequency of 40 Hz as well as a lower frequency of about 4 Hz (close to the fundamental frequency) using a shake table. The imposed acceleration amplitude ranged from 0.2 to 1.2g. The test results showed that the response characteristics of the structures differed under high‐ and low‐frequency excitations. The frames were able to sustain high‐frequency excitations without damage but were inadequate for low‐frequency excitations, even though the frames exhibited some ductility. Linear‐elastic time‐history analysis can predict reasonably well the structural response under high‐frequency excitations. As the frames were not designed for seismic loads, the reinforcement detailing may not have been adequate, based on the crack pattern observed. The effect of vertical excitation can cause significant additional forces in the columns and moment reversals in the beams. The ‘strong‐column, weak‐beam’ approach for lateral load RC frame design is supported by experimental observations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
58.
Pegmatite dikes bearing andalusite crosscut foliation S2 in Alpujarride gneisses and schists. Post‐S2 andalusite is transposed by a foliation S3, defined by fibrolite, which affects the dikes. The dikes represent highly differentiated granitic magmas with low REE and Zr contents and a positive Eu anomaly. U‐Pb SHRIMP dating of magmatic zircons provided Pan‐African ages (cores) and late Variscan ages (rims). However, U‐rich rims also provided metamorphic Alpine ages, supporting a polyorogenic tectonometamorphic history for pre‐Mesozoic Alpujarride rocks.  相似文献   
59.
Groundwater samples from six wells and various species of plants from soils developed on ophiolites were collected from an arid area (AlKhod area, Oman) and analyzed for trace elements including rare earth elements (REEs). The distribution patterns of REEs in plants indicated an enrichment in middle REEs (MREEs?=?Sm to Dy) and heavy REEs (HREEs?=?Ho to Lu), when they are normalized to the REE composition of the Post Archean Australian Shale (PAAS), with a significant negative anomaly in Ce and a positive anomaly in Eu. Compared to Oman ophiolites, the REEs in different species of plants are depleted in Ce and enriched in MREEs and slightly enriched in light REE (LREE?=?from La to Nd). Relative to PAAS, the distribution of REEs in groundwaters revealed similar patterns to the REE distribution in plants. The distribution patterns of REEs in plants relative to those in waters are nearly flat. These patterns suggest that the transfer of REEs from soil solutions to the groundwaters in Oman occurs without any significant fractionation.  相似文献   
60.
ABSTRACT. Recent attempts by U.S. politicians to reform the nation'sschools have shifted the goal of education to school accountability as assessed in standardized testing. Such an emphasis undermines geographical education in schools because of geography'ssuperficial representation in tests and in the social studies curriculum. Fieldwork done in the classroom can point to means of circumventing this dilemma. Collaborative fieldwork between college faculty members and public‐school teachers has the potential for adding geography to the social studies curriculum in a substantive way. Work conducted jointly by Hartwick College and the Oneonta (New York) Middle School exemplifies such a partnership.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号