首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   7篇
  国内免费   2篇
测绘学   5篇
大气科学   18篇
地球物理   46篇
地质学   80篇
海洋学   10篇
天文学   3篇
综合类   7篇
自然地理   5篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   15篇
  2019年   3篇
  2018年   20篇
  2017年   15篇
  2016年   19篇
  2015年   9篇
  2014年   12篇
  2013年   16篇
  2012年   7篇
  2011年   12篇
  2010年   7篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1976年   1篇
排序方式: 共有174条查询结果,搜索用时 15 毫秒
171.
Sediment discharge due to soil and rock erosion within the watersheds is the major cause of siltation in water reservoirs. Siltation in reservoirs reduces the capacity for power production, irrigation water supply, and other domestic purposes. Hypsometric analysis has widely been used to identifying the geomorphic development stages (stabilized, equilibrium, and un-stable) to assess the erosion proneness of watersheds. In this study, watershed of Kurram Tangi Dam and its four sub-watersheds (SWs) were considered to determine their sediment discharge capacity through hypsometric analysis. The boundaries of watershed and sub-watersheds were delineated from Digital Elevation Model (DEM). The hypsometric parameters i.e., hypsometric integral (HI) and curves were generated using Geographic Information System (GIS) techniques. The HI values of SW-1 (0.41) and SW-2 (0.36) indicated that these two SWs were relatively more prone to erosion and contributed higher sediment discharge in Dam siltation. The results were validated through sampling the main drainage channel (Kurram River) to determine the sediment concentration at 12 sites during summer, winter, and spring seasons. Comparison of HI and sediment concentration of SWs presented high correlation (R2?=?0.87). The results emphasized the effective watershed management, extensive afforestation, and construction of silt-control structures at appropriate locations in sub-watersheds. This will ultimately maintain the water and power generation capacity as well as extending the life span of the Dam.  相似文献   
172.
Predicting behavior and the geometry of the channels and alluvial rivers in which the erosion and sediment transport are in equilibrium is one of the most important topics in river engineering. Various researchers have proposed empirical equations to estimate stable river width (W). In this research, empirical equations were examined and tested with a comprehensive available data set consisting of 1644 points collected from 29 stable rivers in various parts of the world. The data set covers a wide range of flow conditions, river geometry, and bed sediments. This data set is classified in two groups (W < 600 m and W ≥ 600 m) for presenting the new models. The new linear and nonlinear multivariable equations were fitted to these two groups, and the best models were selected by preliminary tests and diagnostic determined for each group. The determination coefficient of these models ranged from 0.87 to 0.96. The results show that the models presented in this paper are more accurate with respect to the previously presented models. In the second part, “Artificial neural networks,” perceptron was used and a new methodology for estimating stable channel width was developed. Comparison of the statistical methods presented in this paper and the results of perceptron neural network revealed preferential recent method.  相似文献   
173.
174.
Located in Iranian sector of the Persian Gulf, Foroozan Oilfield has been producing hydrocarbons via seven different reservoirs since the 1970s. However, understanding fluid interactions and horizontal continuity within each reservoir has proved complicated in this field. This study aims to determine the degree of intra-reservoir compartmentalization using gas geochemistry, light hydrocarbon components, and petroleum bulk properties, comparing the results with those obtained from reservoir engineering indicators. For this purpose, a total of 11 samples of oil and associated gas taken from different producing wells in from the Yammama Reservoir were selected. Clear distinctions, in terms of gas isotopic signature and composition, between the wells located in northern and southern parts of the reservoir (i.e. lighter δ13C1, lower methane concentration, and negative sulfur isotope in the southern part) and light hydrocarbon ratios (e.g. nC7/toluene, 2,6-dmC7/1,1,3-tmcyC5 and m-xylene/4-mC8) in different oil samples indicated two separate compartments. Gradual variations in a number of petroleum bulk properties (API gravity, V/Ni ratios and asphaltene concentration) provided additional evidence on the reservoir-filling direction, signifying that a horizontal equilibrium between reservoir fluids across the Yammama Reservoir is yet to be achieved. Finally, differences in water-oil contacts and reservoir types further confirmed the compartmentalization of the reservoir into two separate compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号