The Apalachicola River is the principal source of clastic sediment to the northeastern Gulf of Mexico. During the late Holocene virtually all of the river's sediment load has been deposited in the modern Apalachicola Delta and in the river's estuary, Apalachicola Bay, which has been filling rapidly. During late Quaternary lowstands, prior to the development of the modern estuary, the river traversed the present-day inner and mid-shelf, incising a network of channels. Based on seismic records, many of these buried shelf channels were considerably larger than their modern counterparts.
During lowstands the Apalachicola River also deposited coarse sediment on the shelf as deltaic and associated river-mouth sediments. These deposits comprise the modern near-surface sediments of the inner and middle shelf. An investigation of subsurface sedimentary features observed in seismic profiles provides details on the late Quaternary development of the northeastern Gulf of Mexico shelf. Seismic reflection profiles obtained on the inner and mid-shelf regions of northwest Florida reveal an approximately 50 m thickness of late Quaternary sediments, comprised of two and sometimes three discrete clastic sequences. Two lower fluvial sequences total as much as 40–50 m in thickness. A transgressive marine sand deposit overlies the older features in some places, varying in thickness from 0 to 5 m. Identification of seismic facies, combined with stratigraphic data from a suite of coastal boreholes, enables correlation of offshore seismic stratigraphic units with late Tertiary and Quaternary coastal stratigraphy. 相似文献