首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79008篇
  免费   1206篇
  国内免费   1055篇
测绘学   2109篇
大气科学   6210篇
地球物理   15310篇
地质学   28427篇
海洋学   6915篇
天文学   17823篇
综合类   288篇
自然地理   4187篇
  2021年   771篇
  2020年   833篇
  2019年   914篇
  2018年   1987篇
  2017年   1911篇
  2016年   2436篇
  2015年   1343篇
  2014年   2268篇
  2013年   4037篇
  2012年   2435篇
  2011年   3143篇
  2010年   2784篇
  2009年   3654篇
  2008年   3129篇
  2007年   3087篇
  2006年   2985篇
  2005年   2275篇
  2004年   2307篇
  2003年   2223篇
  2002年   2137篇
  2001年   1891篇
  2000年   1853篇
  1999年   1484篇
  1998年   1519篇
  1997年   1473篇
  1996年   1303篇
  1995年   1224篇
  1994年   1088篇
  1993年   964篇
  1992年   945篇
  1991年   935篇
  1990年   986篇
  1989年   835篇
  1988年   848篇
  1987年   933篇
  1986年   860篇
  1985年   1024篇
  1984年   1152篇
  1983年   1075篇
  1982年   1001篇
  1981年   918篇
  1980年   868篇
  1979年   857篇
  1978年   855篇
  1977年   726篇
  1976年   670篇
  1975年   680篇
  1974年   676篇
  1973年   706篇
  1971年   463篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
881.
Abstract

Application of Geographical Information Systems (GIS) to environmental problems requires a spatial delineation of soil properties and some a priori knowledge of their variability. In the U.S.A. estimated soil properties are available from soil surveys published by the National Cooperative Soil Survey. However, information on the extent and nature of their variability is generally lacking. To remedy the situation, variability of selected soil properties measured at farm and watershed scales was compared with published values using geostatistical methods. Results showed that the variability of bulk density and hydraulic conductivity can be estimated by comparing regularized variograms of measured and published values. An overlay method was proposed that combines measured and published delineations of soil properties into an overlay with the properties of both. The technique makes it possible to incorporate variability into a GIS analysis using data available from published soil surveys.  相似文献   
882.
One of the major after effect of Bhuj Earthquake which occurred on January 26, 2001 was wide spread appearance of liquefaction of soil in the Rann of Kachchh and the coastal areas of Kandla port covering an area of more than tens of thousands of kilometers. Remote sensing data products allow us to explore the land surface parameters at different spatial scales. In this work, an attempt has been made to identify the liquefied soil area using conventional indices from IRS-1D temporal images. The same has been investigated and compared with Class Based Sensor Independent (CBSI) spectral indices, while applying fuzzy based noise classification as soft computing approach using supervised classification. Seven spectral indices have been investigated to identify liquefied soil areas using temporal multi-spectral images. The result shows that the temporal variations can be accounted by using appropriate remote sensing based spectral indices. It is found that CBSI based TNDVI using temporal data yields the best results for identification of liquefied soil areas, while CBSI based SR gives best results for water body identification.  相似文献   
883.
AMADEUS W.GRABAU   《地质学报》1922,1(Z1):44-88
Those who have followed the historical development of the systematicclassification of the old Palaeozoic rocks in Europe would undoubtedly wellremember how the Ordovician became recognized as a well-defined,independ-  相似文献   
884.
Synoptivity and the exemplified fracture systems exhibited by the space borne imagery data has helped in solving many of the geological enigma in various parts of the world. The study conducted, using such remotly sensed data, in Jhalawar anticline, part of Proterozoic Cratonic Vindhyan Basin, Rajasthan, India, led to infer the history of tectonic evolution of peribasinal deformation which has been a matter of controversy for a century and more. In Landsat MSS data the Jhalawar region displays a panorama of lineaments and their analysis through azimuthal frequency diagrams, isofracture, lineament incidence and lineament intersection incidence density maps shows that the mean orientation of the lineaments fall in NW-SE and NE-SW and the shape of the various lineament density contours also show NE-SW and NW-SE orientations. In aerial photographs the area exhibits four sets of lineaments in NE-SW, NW-SE, N-S and E-W directions. Amongst these the former two sets are expressed as wide open master fracture systems with prolific vegetation fills along them and the latter two sets are characteristically observed as thin vegetation linears with frequent strike slip faulting along them. The further analysis of these fracture/lineament systems derived from multi-level remote sensing data shows that the Jhalawar anticline, which followed the pattern of flexural slip fold mechanism, was evolved by horizontally disposed σ1 (greatest principal stress) and 3σ (least principal stress) with the former oriented in NE-SW and the latter aligned in NW-SE directions with vertically disposed 2σ. The inference of such palaeostress environment of the Jhalawar region lead in the identification of a buried rigid basement high southwest of Jhalawar anticline, beneath the Deccan pile and loci of ground water, silica sand and probable igneous plug.  相似文献   
885.
The Snake River Plain-Yellowstone volcanic system is one of the largest, basaltic, volcanic field in the world. Here, there is clear evidence for northeasterly progression of rhyolitic volcanism with its present position in Yellowstone. Many theories have been advanced for the origin of the Snake River Plain-Yellowstone system. Yellowstone and Eastern Snake River Plain have been studied intensively using various geophysical techniques. Some sparse geophysical data are available for the Western Snake River Plain as well. Teleseismic data show the presence of a large anomalous body with low P- and S-wave velocities in the crust and upper mantle under the Yellowstone caldera. A similar body in which compressional wave velocity is lower than in the surrounding rock is present under the Eastern Snake River Plain. No data on upper mantle anomalies are available for the Western Snake River Plain. Detailed seismic refraction data for the Eastern Snake River Plain show strong lateral heterogeneities and suggest thinning of the granitic crust from below by mafic intrusion. Available data for the Western Snake River Plain also show similar thinning of the upper crust and its replacement by mafic material. The seismic refraction results in Yellowstone show no evidence of the low-velocity anomalies in the lower crust suggested by teleseismic P-delay data and interpreted as due to extensive partial melting. However, the seismic refraction models indicate lower-than-normal velocities and strong lateral inhomogeneities in the upper crust. Particularly obvious in the refraction data are two regions of very low seismic velocities near the Mallard Eake and Sour Creek resurgent domes in the Yellowstone caldera. The low-velocity body near the Sour Creek resurgent dome is intepreted as partially molten rock. Together with other geophysical and thermal data, the seismic results indicate that a sub-lithospheric thermal anomaly is responsible for the time-progressive volcanism along the Eastern Snake River Plain. However, the exact mechanism responsible for the volcanism and details of magma storage and migration are not yet fully understood.  相似文献   
886.
The methods and results of stacking of seismograms of nuclear explosions registered by the world network of seismic stations from 1980 until 1988 are presented. Stacking of seismograms obtained at one seismic station from the sources located in the same place allows us substantially to increase the useful signal/noise ratio. This, in turn, allows more confident correlation of various seismic waves coming to the seismic stations after the first arrivals, particularly, converted and reflected waves from different boundaries inside the Earth.  相似文献   
887.
Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 × 3 × 4 factorial design (i.e. two temperatures: 25 and 35 °C; three salinities: 15.0‰, 34.5‰ and 45.0‰; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96h-LC50s of Cu and TBT were 1024 and 0.149 μg l−1 respectively (at 25 °C; 34.5‰) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using ‘concentration’ as the covariate and both ‘temperature’ and ‘salinity’ as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.  相似文献   
888.
Ehhalt  D. H.  Heidt  L. E. 《Pure and Applied Geophysics》1973,106(1):1352-1360
Stratospheric profiles of CH4 and H2 over eastern Texas have been derived up to 31 km altitude from air samples collected aboard a balloon and analyzed by gas chromatography. For H2, contamination during flight and measurement presented a problem which has been resolved only recently. The earlier profiles require corrections which are rather large for the highest altitudes.The three profiles indicate an increase of the H2 concentration in the lower stratosphere from about 0.5 p.p.m. per volume at the tropopause to about 0.8 p.p.m. at around 27 km altitude. Above that altitude the H2 concentration decreases again. An air sample collected between 44 and 62 km by a rocket-borne cryogenic sampler had an H2 concentration of 0.4 p.p.m.The five CH4 profiles showed a decrease in CH4 concentration with altitude generally with a steeper gradient directly above the tropopause and a weaker gradient at higher altitudes reaching 0.9 p.p.m. at 30 km altitude. The CH4 concentration in the rocket sample was 0.25 p.p.m., in good agreement with the gradient obtained from the balloon samples.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   
889.
The Late Precambrian–Early Paleozoic metamorphic basement forms a volumetrically important part of the Andean crust. We investigated its evolution in order to subdivide the area between 18 and 26°S into crustal domains by means of petrological and age data (Sm–Nd isochrons, K–Ar). The metamorphic crystallization ages and tDM ages are not consistent with growth of the Pacific margin north of the Argentine Precordillera by accretion of exotic terranes, but favor a model of a mobile belt of the Pampean Cycle. Peak metamorphic conditions in all scattered outcrop areas between 18 and 26°S are similar and reached the upper amphibolite facies conditions indicated by mineral paragensis and the occurrence of migmatite. Sm–Nd mineral isochrons yielded 525±10, 505±6 and 509±1 Ma for the Chilean Coast Range, the Chilean Precordillera and the Argentine Puna, and 442±9 and 412±18 Ma for the Sierras Pampeanas. Conventional K–Ar cooling age data of amphibole and mica cluster around 400 Ma, but are frequently reset by Late Paleozoic and Jurassic magmatism. Final exhumation of the Early Paleozoic orogen is confirmed by Devonian erosional unconformities. Sm–Nd depleted mantle model ages of felsic rocks from the metamorphic basement range from 1.4 to 2.2 Ga, in northern Chile the average is 1.65±0.16 Ga (1σ; n=12), average tDM of both gneiss and metabasite in NW Argentina is 1.76±0.4 Ga (1σ; n=22), and the isotopic composition excludes major addition of juvenile mantle derived material during the Early Paleozoic metamorphic and magmatic cycle. These new data indicate a largely similar development of the metamorphic basement south of the Arequipa Massif at 18°S and north of the Argentine Precordillera at 28°S. Variations of metamorphic grade and of ages of peak metamorphism are of local importance. The protolith was derived from Early to Middle Proterozoic cratonic areas, similar to the Proterozoic rocks from the Arequipa Massif, which had undergone Grenvillian metamorphism at ca. 1.0 Ga.  相似文献   
890.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号