首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53472篇
  免费   849篇
  国内免费   562篇
测绘学   1448篇
大气科学   3799篇
地球物理   9901篇
地质学   19206篇
海洋学   4906篇
天文学   12902篇
综合类   188篇
自然地理   2533篇
  2022年   365篇
  2021年   629篇
  2020年   658篇
  2019年   707篇
  2018年   1586篇
  2017年   1507篇
  2016年   1874篇
  2015年   988篇
  2014年   1746篇
  2013年   2866篇
  2012年   1854篇
  2011年   2374篇
  2010年   2069篇
  2009年   2677篇
  2008年   2296篇
  2007年   2349篇
  2006年   2193篇
  2005年   1621篇
  2004年   1638篇
  2003年   1548篇
  2002年   1472篇
  2001年   1298篇
  2000年   1218篇
  1999年   993篇
  1998年   1039篇
  1997年   947篇
  1996年   816篇
  1995年   782篇
  1994年   685篇
  1993年   604篇
  1992年   592篇
  1991年   593篇
  1990年   622篇
  1989年   493篇
  1988年   504篇
  1987年   528篇
  1986年   487篇
  1985年   610篇
  1984年   673篇
  1983年   590篇
  1982年   561篇
  1981年   499篇
  1980年   469篇
  1979年   477篇
  1978年   458篇
  1977年   368篇
  1976年   345篇
  1975年   357篇
  1974年   308篇
  1973年   342篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
761.
The mechanical characteristics of coal under uniaxial compressive stress and uniaxial tensile stress are key factors in investigations of the stability of galleries and coal faces, and are vital considerations for the efficient design of coalmines, disaster prevention, and environmental preservation. These mechanical characteristics have long been a topic of research, but remain insufficiently understood. In this study we performed uniaxial compression tests and uniaxial tension tests on coal, with particular attention to two concerns. The first was to measure the loading rate dependence of the peak strength of coal. Coal shows high sample-to-sample scatter in strength; test methods that are successful in comparatively homogeneous rock types cannot be used for coal. We therefore used an alternative test method that was recently developed by the authors. Anthracite samples were subjected to alternating slow and fast strain rates. Measured variations in stress during this process were used to estimate the loading rate dependence of peak strength. The second objective was to obtain complete stress–strain curves for coal under uniaxial tensile stress. It is difficult to hold samples secure during a tensile test; consequently, such curves have yet to be obtained. This study presents a successful application of the authors' method to the analysis of coal samples, yielding a complete stress–strain curve under tensile stress. The two methods presented here hold promise for application not only to anthracite but also to a wide variety of coals. It is possible to derive the values of the constants used in constitutive equations from the obtained experimental results. Once these equations are determined, they can be incorporated into finite-element software to investigate various time-dependent behaviors of coal and aid in the efficient design of coalmines and the prevention of subsidence and mine disasters.  相似文献   
762.
The anodic and cathodic behaviour of pyrite with clay and different carbon coatings of activated carbon, graphite and carbonaceous matter in cyanide medium was investigated using the potentiodynamic method. The presence of clay coating did not change the polarisation curve appearance for either the anodic oxidation of pyrite or the cathodic reduction of oxygen or the potential of the current plateau, but only decreased the plateau current especially at a higher coating thickness. The presence of the carbon coatings marginally shifted the rest potential for pyrite to a more anodic position and slightly changed the polarisation curve appearance for pyrite oxidation. The current density for pyrite oxidation largely increased in the presence of the carbon coatings, the potential at the plateau shifted to more cathodic positions, and the plateau width became smaller. These effects became more noticeable at a higher coating thickness. The activated carbon, graphite and carbonaceous matter coatings performed similarly in affecting pyrite oxidation at a similar thickness. The carbon coatings significantly increased the limiting current densities for oxygen reduction on pyrite, and the limiting current plateau became steeper at a higher coating thickness. The carbon coatings increased the limiting current density for oxygen reduction to a similar extent at a low coating thickness, but increased to varied extents at a higher coating thickness. The carbon coatings also greatly increased the cathodic current density for gold reduction on pyrite. The enhancement of pyrite oxidation and oxygen or gold reduction on pyrite by the carbon coatings was likely attributed to the electrochemical interaction between pyrite and the carbon materials with electron-rich surfaces and high conductivity. The presence of the carbon coatings significantly increased the oxidation of pyrite in aerated cyanide solutions and the preg-robbing of pyrite especially at a higher coating thickness.  相似文献   
763.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom–water interfaces for two marine planktonic (Thalassiosira weissflogii = TW, Skeletonema costatum = SC) and two freshwater periphytic species (Achnanthidium minutissimum = AMIN, Navicula minima = NMIN) by combining adsorption measurements with surface complexation modeling. Reversible adsorption experiments were performed at 20 °C after 3 h of exposure as a function of pH, metal concentration in solution, and ionic strength. While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. These observations allowed us to construct a surface complexation model for cadmium and lead binding by diatom surfaces that postulates the constant capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. Parameters of this model are in agreement with previous acid–base titration results and allow quantitative reproduction of all adsorption experiments.  相似文献   
764.
The characterisation of waste is entering a new phase with the latest developments of characterisation leaching tests and associated modelling capabilities. The currently applied too simple testing approaches lead to poor choices in waste management. With the increased insight in release controlling processes chemical speciation aspects can be addressed even in the most complex and heterogeneous waste materials. From a composition perspective materials may be highly variable, but often materials are far more consistent in their leaching behaviour. This aspect should be exploited more extensively as it holds the key to treat waste materials in such a way that long term solutions are achieved rather than reaching temporary gains.  相似文献   
765.
Understanding the evolution of geochemical and geomorphic systems requires measurements of long-term rates of physical erosion and chemical weathering. Erosion and weathering rates have traditionally been estimated from measurements of sediment and solute fluxes in streams. However, modern sediment and solute fluxes are often decoupled from long-term rates of erosion and weathering, due to storage or re-mobilization of sediment and solutes upstream from the sampling point. Recently, cosmogenic nuclides such as 10Be and 26Al have become important new tools for measuring long-term rates of physical erosion and chemical weathering. Cosmogenic nuclides can be used to infer the total denudation flux (the sum of the rates of physical erosion and chemical weathering) in actively eroding terrain. Here we review recent work showing how this total denudation flux can be partitioned into its physical and chemical components, using the enrichment of insoluble tracers (such as Zr) in regolith relative to parent rock. By combining cosmogenic nuclide measurements with the bulk elemental composition of rock and soil, geochemists can measure rates of physical erosion and chemical weathering over 1000- to 10,000-year time scales.  相似文献   
766.
767.
768.
769.
770.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号