首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76268篇
  免费   1244篇
  国内免费   830篇
测绘学   2259篇
大气科学   5540篇
地球物理   14531篇
地质学   27275篇
海洋学   6669篇
天文学   18121篇
综合类   293篇
自然地理   3654篇
  2022年   472篇
  2021年   807篇
  2020年   839篇
  2019年   936篇
  2018年   2109篇
  2017年   2019篇
  2016年   2520篇
  2015年   1408篇
  2014年   2419篇
  2013年   4063篇
  2012年   2506篇
  2011年   3252篇
  2010年   2794篇
  2009年   3617篇
  2008年   3117篇
  2007年   3141篇
  2006年   3001篇
  2005年   2265篇
  2004年   2231篇
  2003年   2161篇
  2002年   2068篇
  2001年   1826篇
  2000年   1734篇
  1999年   1462篇
  1998年   1479篇
  1997年   1388篇
  1996年   1232篇
  1995年   1196篇
  1994年   1070篇
  1993年   919篇
  1992年   873篇
  1991年   886篇
  1990年   931篇
  1989年   787篇
  1988年   773篇
  1987年   888篇
  1986年   761篇
  1985年   953篇
  1984年   1043篇
  1983年   957篇
  1982年   915篇
  1981年   789篇
  1980年   759篇
  1979年   712篇
  1978年   704篇
  1977年   618篇
  1976年   556篇
  1975年   552篇
  1974年   548篇
  1973年   601篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
551.
Edwin K. Schneider 《Icarus》1983,55(2):302-331
The simplified theory of steady, nearly inviscid, thermally forced axially symmetric atmospheric motions developed by Schneider (1977) is applied to the study of the problem of the Martian great dust storms. A highly idealized calculation of the atmospheric response to heating concentrated in a small latitude band is carried out. Qualitatively different local and global response regimes are identified. As the heating is increased from zero, some critical value is reached at which the response jumps from local to global. It is suggested that this transition from local to global response may be related to the observed explosive growth of great dust storms. Results from the idealized model indicate that subtropical latitudes are favored for the initiation of a dust raising global dust storm, as the meridional scale of the response to a heat source of fixed intensity is largest for the heat source located close to the equator, but the surface stress in the zonal direction produced by the response increases as the heat source is moved towards the poles. Also, the steady axially symmetric Martian response to solar forcing is examined. Modification to the solar forced response due to an added latitudinally localized heat source is briefly discussed, and it is indicated that similar transition behavior to that obtained in the more idealized model is to be expected in this case also. Implications of the dynamical model for the dependence of the occurence of great dust storms on orbital parameters are remarked on.  相似文献   
552.
High-velocity impacts of interplanetary meteoroids on Saturn's rings are discussed. It is shown that the neutral gas emitted by impact vaporization may be responsible, to a large part, for the observed neutral ring atmosphere. Both the predicted neutral gas injection rate and the gas temperature (or kinetic energy) are compatible with the measurements (see Broadfoot, A. L., B. R. Sandel, D. E. Shemansky, J. B. Holberg, G. R. Smith, D. F. Strobel, J. C. McConnell, S. Kumar, D. M. Hunten, S. K. Atreya, T. M. Dohnahne, H. W. Moos, J. L. Bertaux, J. E. Blamont, R. B. Pomphrey, and S. Linik, Science212, 206–211, 1981). Heavy ejecta particles produce a particulate ring “halo”. The physical properties of this halo are calculated, and it appears to be identical with the tenous particle population discussed by Baum and Kreidl (1982). Erosion of Saturn's ring particles, the resulting mass balance, and regolith formation are estimated. This provides some constraints on surface properties and optical albedo.  相似文献   
553.
Exact solutions have been obtained for a massive fluid sphere under the extreme causality condition (dP/dρ)=1. Radial pulsational stability of these structures has been discussed. It is found that for pulsationally stable configurations the surface to central density ratio is greater than 0.30, the maximum values for surface and central redshifts are 0.85 and 3.40 respectively in the extreme case, and the maximum mass and size are respectively 4.8M and 20.1 km. It has also been shown that these structures are gravitationally bound, with a maximum binding energy per unit rest mass equal to 0.25 for a surface to central density ratio ?0.40. Slow rotation of these configurations has also been considered, and the relative drag and moment of inertia have been calculated. These results have been applied to the Crab pulsar and the mass of the pulsar has also been calculated based upon this model.  相似文献   
554.
We establish limits on the total radiant energy of solar flares during the period 1980 February – November, using the solar-constant monitor (ACRIM) on board the Solar Maximum Mission. Typical limits amount to 6 × 1029 erg/s for a 32-second integration time, with 5σ statistical significance, for an impulsive emission; for a gradual component, about 4 × 1032 ergs total radiant energy. The limits lie about an order of magnitude higher than the total radiant energy estimated from the various known emission components, suggesting that no heretofore unknown dominant component of flare radiation exists.  相似文献   
555.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038.  相似文献   
556.
E. Hiei  T. Okamoto  K. Tanaka 《Solar physics》1983,86(1-2):185-191
Flare activity was observed near the limb with two coronagraphs at the Norikura Solar Observatory and the Soft X-ray Crystal Spectrometer (SOX) aboard HINOTORI. A prominence activation occurred and then Hα brightenings were seen on the disk near the prominence. The prominence became very bright and its electron density increased to 1012.8 cm?3 in 1/2 hour. Loop prominence systems appeared above the Hα brightenings about half an hour after the onset of the flare, and were observed in the coronal lines CaXV 5694Å, FeXIV 5303Å, and FeX 6374Å. Shifted and asymmetric profiles of the emission line of 5303Å were sometimes observed, and turbulent phenomena occurred even in the thermal phase. The energy release site of the flare at the onset would be lower than 20 000 km above the solar limb.  相似文献   
557.
The data such as the H-spectrum-spectroheliographic (SSHG) observations, the H-chromospheric observations, etc., of a flare loop prominence which occurred on the western solar limb on 1981 April 27 have been obtained at Yunnan Observatory. The distribution of the internal motions and the macroscopical motion of the flare loop prominence with time and space in the course of its eruption and ascension is derived from the comprehensive analysis of the data. The possible physical pictures and the instability of the motions of the loop are inferred and discussed.  相似文献   
558.
Nagai  F.  Wu  S. T.  Tandberg-Hanssen  E. 《Solar physics》1983,84(1-2):271-283
We have investigated numerically how a temperature difference between electrons and protons is produced in a flaring loop by adopting a one-fluid, two-temperature model instead of a single-temperature model. We have treated a case in which flare energy is released in the form of heating of electrons located in the top part of the loop.In this case, a large temperature difference (T e/T p 10) appears in the corona in the energy-input phase of the flare. When the material evaporated from the chromosphere fills the corona, the temperature difference in the loop begins to shrink rapidly from below. Eventually, in the loop apex, the proton temperature exceeds the electron temperature mainly due to cooling of the electrons by conduction down the loop and heating of the protons by compression of the ascending material. In the late phase of the flare (t 15 min from the flare onset), the temperature difference becomes less than 2% of the mean temperature of electrons and protons at every point in the loop.  相似文献   
559.
The Culgoora radioheliograph has been modified for observing at 327.4 MHz, which is in addition to the three frequencies (43.25, 80, and 160 MHz) previously available. At the new frequency the array beamwidth is 56, which represents the highest resolution yet available for metre-wavelength solar mapping.At 327.4 MHz the sources of radio emission are mainly in the lowest layers of the corona. Some preliminary four-frequency observations have been made of type I storms. It is found that the source size generally decreases with increasing observing frequency. This result confirms earlier suggestions that the sources of both type I and type III emission are contained in structures whose boundaries diverge outwards in the corona.  相似文献   
560.
Simultaneous microwave and X-ray observations are presented for a solar flare detected on May 8, 1980 starting at 19:37 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28–490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms, respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive peaks in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240 ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5 s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号