首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79348篇
  免费   1138篇
  国内免费   1472篇
测绘学   2873篇
大气科学   6113篇
地球物理   14980篇
地质学   31116篇
海洋学   6015篇
天文学   14742篇
综合类   2319篇
自然地理   3800篇
  2022年   379篇
  2021年   676篇
  2020年   706篇
  2019年   742篇
  2018年   6121篇
  2017年   5341篇
  2016年   4468篇
  2015年   1302篇
  2014年   1973篇
  2013年   3072篇
  2012年   2814篇
  2011年   4980篇
  2010年   4064篇
  2009年   4938篇
  2008年   4162篇
  2007年   4608篇
  2006年   2327篇
  2005年   1875篇
  2004年   2062篇
  2003年   1973篇
  2002年   1773篇
  2001年   1402篇
  2000年   1324篇
  1999年   1063篇
  1998年   1117篇
  1997年   996篇
  1996年   855篇
  1995年   840篇
  1994年   748篇
  1993年   632篇
  1992年   619篇
  1991年   620篇
  1990年   659篇
  1989年   528篇
  1988年   529篇
  1987年   558篇
  1986年   506篇
  1985年   650篇
  1984年   712篇
  1983年   641篇
  1982年   600篇
  1981年   557篇
  1980年   523篇
  1979年   505篇
  1978年   506篇
  1977年   397篇
  1976年   381篇
  1975年   398篇
  1974年   357篇
  1973年   385篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
941.
A method for the prediction of ocean waves was developed on the basis of the single-parameter growth equation of wind waves, proposed byToba (1978) on the basis of similarity in growing wind waves. The applicability of the method to actual problems was tested by hindcasting the wave characteristics with the method, for two cases with differing time and space scales, one in Kii Channel Approach, Japan, and the other in the North Atlantic Ocean. The results showed that the present method can predict waves within an error of 1.3 m in wave heights, which ranged from 3 to 12 m.  相似文献   
942.
943.
Regeneration of sand waves after dredging   总被引:2,自引:0,他引:2  
Sand waves are large bed waves on the seabed, being a few metres high and lying hundreds of metres apart. In some cases, these sand waves occur in navigation channels. If these sand waves reduce the water depth to an unacceptable level and hinder navigation, they need to be dredged. It has been observed in the Bisanseto Channel in Japan that the sand waves tend to regain their shape after dredging. In this paper, we address modelling of this regeneration of sand waves, aiming to predict this process. For this purpose, we combine a very simple, yet effective, amplitude-evolution model based on the Landau equation, with measurements in the Bisanseto Channel. The model parameters are tuned to the measured data using a genetic algorithm, a stochastic optimization routine. The results are good. The tuned model accurately reproduces the measured growth of the sand waves. The differences between the measured weave heights and the model results are smaller than the measurement noise. Furthermore, the resulting parameters are surprisingly consistent, given the large variations in the sediment characteristics, the water depth and the flow field. This approach was tested on its predictive capacity using a synthetic test case. The model was tuned based on constructed predredging data and the amplitude evolution as measured for over 2 years. After tuning, the predictions were accurate for about 10 years. Thus, it is shown that the approach could be a useful tool in the optimization of dredging strategies in case of dredging of sand waves.  相似文献   
944.
This paper discusses a theoretical model of the electromagnetic field induced by internal waves of baric origin. Comparison of thein situ data on the differences between the horizontal electrical field potentials conditioned by internal waves in some Black Sea and tropical Atlantic areas and of the results of calculations of the model electrical field's intensity in those areas shows their good agreement. The dependences of the electromagnetic field component amplitudes on the internal waves parameters and sea-bed rock conductivity are considered. Translated by Vladimir A. Puchkin.  相似文献   
945.
The analogy between desert oasis and deep-sea chemosynthetic community arose from the biomass contrast between vents and the relatively depauperate background benthic fauna. Fully developed, the analogy helps pose questions about interactions with the background fauna with respect to resources, colonization, and persistence. The chemosynthetic sites of the Gulf of Mexico provide an opportunity to consider possible interactions between vent and nonvent fauna over a 3000-m depth range. It is postulated that deep chemosynthetic communities require the operation of geochemical transporting and concentrating processes to overcome low levels of in situ methane and sulfide production. Clathrate reservoirs may serve these functions. A few chemosynthetic species at the Gulf of Mexico upper slope sites are related to shallow-water sulfide species, but it can be speculated that the dominant chemosynthetic fauna may have originated in a wide spread deep sulfide biome of the Cretaceous. Generic endemism of consumers is low in Gulf of Mexico sites, suggesting a high level of colonization from the surrounding benthos. Chemosynthetic communities may avoid excessive colonization by predators in spite of the apparent food limitation of the surrounding benthos due to toxicity or an evolutionary mechanism selecting against specialized predators. The abundance of large predators is related to the composition of the surrounding benthos and is high at the Gulf of Mexico upper slope sites. Exclusion of chemosyntheic communities from shallower depths may be due to excessive predation by generalists.  相似文献   
946.
The dark false mussel, Mytilopsis leucophaeata is an important mussel colonising the brackish-water systems of temperate and subtropical regions. Of late it has earned notoriety as a biofouling species in industrial cooling water systems. However, there are no published data on the temperature tolerance of this species. This paper presents data on the upper temperature tolerance of this mussel from the view point of biofouling control using thermal methods. In addition to mortality, response of physiological activities such as oxygen consumption, filtration rate, foot activity and byssus thread production were also studied at temperatures varying from 5 to 35 degrees C. Experiments were also carried out to understand the effect of mussel size, breeding condition, nutritional status and acclimation conditions (temperature and salinity) on the mortality pattern. The physiological activities were significantly reduced at temperatures beyond 27.5 degrees C and ceased at 35 degrees C. In 20 mm size group mussels exposed to 37 degrees C, 50% mortality was observed after 85 min and 100% mortality after 113 min. The effect of mussel size on mortality at different temperatures was significant, with the larger size group mussels showing greater resistance. M. leucophaeata collected during the non-breeding season (December-April) were more tolerant to temperature than those collected during the breeding season (June-October). Nutritional status of the mussel had no significant influence on the thermal tolerance of the mussel: fed and starved (non-fed) mussels succumbed to temperature at comparable rates. The effect of acclimation temperature and acclimation salinity on M. leucophaeata mortality at different temperatures was significant. Survival time increased with increasing acclimation temperature and decreased with increasing salinity. In comparison with other co-occurring species such as Mytilus edulis and Dreissena polymorpha, M. leucophaeata appears to be more tolerant to high temperature stress.  相似文献   
947.
Intense studies of upper and deep ocean processes were carried out in the Northwestern Indian Ocean (Arabian Sea) within the framework of JGOFS and related projects in order to improve our understanding of the marine carbon cycle and the ocean’s role as a reservoir for atmospheric CO2. The results show a pronounced monsoon-driven seasonality with enhanced organic carbon fluxes into the deep-sea during the SW Monsoon and during the early and late NE Monsoon north of 10°N. The productivity is mainly regulated by inputs of nutrients from subsurface waters into the euphotic zone via upwelling and mixed layer-deepening. Deep mixing introduces light limitation by carrying photoautotrophic organisms below the euphotic zone during the peak of the NE Monsoon. Nevertheless, deep mixing and strong upwelling during the SW Monsoon provide an ecological advantage for diatoms over other photoautotrophic organisms by increasing the silica concentrations in the euphotic zone. When silica concentrations fall below 2 μmol l−1, diatoms lose their dominance in the plankton community. During diatom-dominated blooms, the biological pathway of uptake of CO2 (the biological pump) appears to be more efficient than during blooms of other organisms, as indicated by organic carbon to carbonate carbon (rain) ratios. Due to the seasonal alternation of diatom and non-diatom dominated exports, spatial variations of the annual mean rain ratios are hardly discernible along the main JGOFS transect.Data-based estimates of the annual mean impact of the biological pump on the fCO2 in the surface water suggest that the biological pump reduces the increase of fCO2 in the surface water caused by intrusion of CO2-enriched subsurface water by 50–70%. The remaining 30 to 50% are attributed to CO2 emissions into the atmosphere. Rain ratios up to 60% higher in river-influenced areas off Pakistan and in the Bay of Bengal than in the open Arabian Sea imply that riverine silica inputs can further enhance the impact of the biological pump on the fCO2 in the surface water by supporting diatom blooms. Consequently, it is assumed that reduced river discharges caused by the damming of major rivers increase CO2 emission by lowering silica inputs to the Arabian Sea; this mechanism probably operates in other regions of the world ocean also.  相似文献   
948.
We consider the procedures of conversion of the conventional and out-of-system units of measurement of the amount and composition of matter used in oceanology to the International System of Units (SI). The coefficients of conversion are presented in the form of a table. We present the data on the units of measurement of mineralization (scales of salinity) of seawater for the oceanic range of its variability, freshened waters of internal seas, and brines. The contemporary concept of salinity as a dimensionless quantity is discussed.Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 61–72, July–August, 2004.  相似文献   
949.
950.
A review is made of circulation and currents in the southwestern East/Japan Sea (the Ulleung Basin), and the Korea/Tsushima Strait which is a unique conduit for surface inflow into the Ulleung Basin. The review particularly concentrates on describing some preliminary results from recent extensive measurements made after 1996. Mean flow patterns are different in the upstream and downstream regions of the Korea/Tsushima Strait. A high velocity core occurs in the mid-section in the upstream region, and splits into two cores hugging the coasts of Korea and Japan, the downstream region, after passing around Tsushima Island located in the middle of the strait. Four-year mean transport into the East/Japan Sea through the Korea/Tsushima Strait based on submarine cable data calibrated by direct observations is 2.4 Sv (1 Sv = 106 m3 s−1). A wide range of variability occurs for the subtidal transport variation from subinertial (2–10 days) to interannual scales. While the subinertial variability is shown to arise from the atmospheric pressure disturbances, the longer period variation has been poorly understood.Mean upper circulation of the Ulleung Basin is characterized by the northward flowing East Korean Warm Current along the east coast of Korea and its meander eastward after the separation from the coast, the Offshore Branch along the coast of Japan, and the anticyclonic Ulleung Warm Eddy that forms from a meander of the East Korean Warm Current. Continuous acoustic travel-time measurements between June 1999 and June 2001 suggest five quasi-stable upper circulation patterns that persist for about 3–5 months with transitions between successive patterns occurring in a few months or days. Disappearance of the East Korean Warm Current is triggered by merging the Dok Cold Eddy, originating from the pinching-off of the meander trough, with the coastal cold water carried Southward by the North Korean Cold Current. The Ulleung Warm Eddy persisted for about 20 months in the middle of the Ulleung Basin with changes in its position and spatial scale associated with strengthening and weakening of the transport through the Korea/Tsushima Strait. The variability of upper circulation is partly related to the transport variation through the Korea/Tsushima Strait. Movements of the coastal cold water and the instability of the polar front also appear to be important factors affecting the variability.Deep circulation in the Ulleung Basin is primarily cyclonic and commonly consists of one or more cyclonic cells, and an anticyclonic cell centered near Ulleung Island. The cyclonic circulation is conjectured to be driven by a net inflow through the Ulleung Interplain Gap, which serves as a conduit for the exchange of deep waters between the Japan Basin in the northern East Sea and the Ulleung Basin. Deep currents are characterized by a short correlation scale and the predominance of mesoscale variability with periods of 20–40 days. Seasonality of deep currents is indistinct, and the coupling of upper and deep circulation has not been clarified yet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号