首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59013篇
  免费   1110篇
  国内免费   593篇
测绘学   1596篇
大气科学   4362篇
地球物理   11362篇
地质学   21438篇
海洋学   5209篇
天文学   13761篇
综合类   212篇
自然地理   2776篇
  2022年   405篇
  2021年   738篇
  2020年   771篇
  2019年   805篇
  2018年   1849篇
  2017年   1782篇
  2016年   2210篇
  2015年   1230篇
  2014年   2042篇
  2013年   3297篇
  2012年   2183篇
  2011年   2687篇
  2010年   2369篇
  2009年   2971篇
  2008年   2512篇
  2007年   2532篇
  2006年   2355篇
  2005年   1761篇
  2004年   1787篇
  2003年   1661篇
  2002年   1583篇
  2001年   1384篇
  2000年   1297篇
  1999年   1055篇
  1998年   1101篇
  1997年   1025篇
  1996年   863篇
  1995年   847篇
  1994年   740篇
  1993年   643篇
  1992年   620篇
  1991年   622篇
  1990年   671篇
  1989年   518篇
  1988年   520篇
  1987年   563篇
  1986年   511篇
  1985年   642篇
  1984年   711篇
  1983年   619篇
  1982年   593篇
  1981年   534篇
  1980年   488篇
  1979年   499篇
  1978年   478篇
  1977年   391篇
  1976年   358篇
  1975年   372篇
  1974年   323篇
  1973年   363篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
961.
Berman’s (1983) activity-composition model for CaO-MgO-Al2O3-SiO2 liquids is used to calculate the change in bulk chemical and isotopic composition during simultaneous cooling, evaporation, and crystallization of droplets having the compositions of reasonable condensate precursors of Types A and B refractory inclusions in CV3 chondrites. The degree of evaporation of MgO and SiO2, calculated to be faithfully recorded in chemical and isotopic zoning of individual melilite crystals, is directly proportional to evaporation rate, which is a sensitive function of PH2, and inversely proportional to the droplet radius and cooling rate. When the precursors are partially melted in pure hydrogen at peak temperatures in the vicinity of the initial crystallization temperature of melilite, their bulk chemical compositions evolve into the composition fields of refractory inclusions, mass-fractionated isotopic compositions of Mg, Si, and O are produced that are in the range of the isotopic compositions of natural inclusions, and melilite zoning profiles result that are similar to those observed in real inclusions. For droplets of radius 0.25 cm evaporating at PH2 = 10−6 bar, precursors containing 8 to 13 wt.% MgO and 20 to 23% SiO2 evolve into objects similar to compact Type A inclusions at cooling rates of 2 to 12 K/h, depending on the precise starting composition. Precursors containing 13 to 14 wt.% MgO and 23 to 26% SiO2 evolve into objects with the characteristics of Type B1 inclusions at cooling rates of 1.5 to 3 K/h. The relatively SiO2-poor members of the Type B2 group can be produced from precursors containing 14 to 16 wt.% MgO and 27 to 33% SiO2 at cooling rates of <1 K/h. Type B2’s containing 27 to 35 wt.% SiO2 and <12% MgO require precursors with higher SiO2/MgO ratios at MgO > 15% than are found on any condensation curve. The characteristics of fluffy Type A inclusions, including their reversely zoned melilite, can only be understood in the context of this model if they contain relict melilite.  相似文献   
962.
Equilibrium dialysis was used to measure Co- and Cu-binding by an isolated peat humic acid (PHA) in controlled laboratory experiments under simulated estuarine conditions: ionic strengths of 0.005 to 0.7 M in NaCl and mixed Na-Mg-Ca chloride solutions, with trace metal concentrations of ∼5 × 10−7 M, a PHA concentration of 10 mg/L, and at constant pH values of ∼7.8 (Co and Cu) and ∼4.6 (Cu only). Generally, Co- and Cu-humic binding decreased substantially with increasing ionic strength and, in the case of Cu, with decreasing pH. The presence of seawater concentrations of Ca and Mg had a relatively small effect on Co-humic binding and no measurable effect on that of Cu under the experimental conditions. The binding data were well-described by an equilibrium speciation code (the Windermere Humic Aqueous Model, WHAM) after optimising the fits by varying the metal-proton exchange constants for humic acid within justifiable limits (i.e., within 1 standard deviation of the mean exchange constants used in the WHAM database). The main factor producing the observed variations in metal-humic binding at constant pH was the electrostatic effect on the humic molecule. WHAM was used to predict Co- and Cu-humic binding in simulations of real estuaries. Co-humic binding is predicted to be relatively unimportant (generally <5% of total Co), whereas the Cu-humic complex is likely to be the dominant species throughout an estuary. The main factors producing changes in Co- and Cu-humic binding in the real-estuary simulations are the electrostatic effect on the humic molecule, ligand competition (mainly from carbonate species) for metals, and to a lesser extent Ca and Mg competition for humic binding sites. Variations in pH are significant only at the freshwater end of an estuary. WHAM simulations also indicated that competition effects between metals are more likely to occur in freshwaters than in seawater, due to enhanced electrostatic binding at low ionic strength.  相似文献   
963.
Fluxes of particulate organic carbon (POC) through the oxygen deficient waters in the eastern tropical North Pacific were found to be relatively less attenuated with depth than elsewhere in the eastern North Pacific. The attenuation coefficient (b) for the flux was found to be 0.40 versus the composite value of 0.86 determined by Martin et al. (1987). To examine this further, sinking POC was collected using sediment traps and allowed to degrade in oxic and suboxic experiments. Using a kinetic model, it was found that degradation proceeded at similar rates (roughly 0.8 day−1) under oxic and suboxic conditions, but a greater fraction of bulk POC was resistant to degradation in the suboxic experiments (61% vs. 23%). Amino acids accounted for 37% of POC collected at 75m, but following degradation the value dropped to 17% and 16% in the oxic and suboxic experiments respectively. POC collected from 500m was 10% amino acids. The non-AA component of POC collected at 75m was not degraded under suboxic conditions, while under oxic conditions it was. These results suggest that microbes degrading OC under suboxic conditions via denitrification preferentially utilize nitrogen-rich amino acids. This preferential degradation of amino acids suggests that 9% more nitrogen may be lost via water column denitrification than is accounted for when a more “Redfieldian” stoichiometry for POC is assumed.  相似文献   
964.
The fossilised soft tissues of a tadpole and an associated coprolitic structure from the organic-rich volcanoclastic lacustrine Upper Oligocene Enspel sediments (Germany) were investigated using high-resolution imaging techniques and nondestructive in situ surface analysis. Total organic carbon analysis of the coprolite and the sediment revealed values of 28.9 and 8.9% respectively. The soft tissues from the tadpole and the coprolite were found to be composed of 0.5 to 1 μm-sized spheres and rod shapes. These features are interpreted as the fossil remains of bacterial biofilms consisting probably of heterotrophic bacteria and fossilised extracellular polymeric substances. They became fossilised while in the process of degrading the organic matter of the organism and the coprolite. Comparison with a modern marine biofilm revealed morphologic details identical to those observed in the fossil bacterial biofilms. Although the fossil biofilms on both macrofossils exhibited identical microtextures, their mode of preservation was inhomogeneous and varied between calcium phosphate and an as yet unidentified mineral phase consisting mainly of Si, Ca, Ti, P, and S, but also showing the presence of Mg, Al, and Fe. The coprolite consists purely of fossilised bacterial cells in a densely packed arrangement and associated fossilised extracellular polymeric substances.In addition to preliminary imaging and energy-dispersive X-ray analysis, both the fossil biofilms and the sediment were investigated by nondestructive in situ analysis using time of flight-secondary ion mass spectroscopy (ToF-SIMS). The mass spectra obtained on the coprolite in mass-resolved chemical mapping mode allowed the tentative identification of a number of organic secondary ion species. Some spectra appear to indicate the presence of bacterial hopanoids, but further work using standard techniques such as gas chromatography mass spectroscopy is needed to conclusively verify the presence of these substances. Nevertheless, ToF-SIMS chemical maps were successfully correlated with electron microscopy images, allowing the correlation of molecular spectra, the spatial distribution of individual organic species, and specific morphologic features to demonstrate the potential of this approach in the analysis of microfossils.  相似文献   
965.
The texture of Los Angeles (stone 1) is dominated by relatively large (0.5−2.0 mm) anhedral to subhedral grains of pyroxene, and generally subhedral to euhedral shocked plagioclase feldspar (maskelynite). Minor phases include subhedral titanomagnetite and ilmenite, Fe-rich olivine, olivine+augite-dominated symplectites [some of which include a Si-rich phase and some which do not], pyrrhotite, phosphate(s), and an impact shock-related alkali- and silica-rich glass closely associated with anhedral to euhedral silica grains. Observations and model calculations indicate that the initial crystallization of Mg-rich pigeonitic pyroxenes at ≤1150 °C, probably concomitantly with plagioclase, was followed by pigeonitic and augitic compositions between 1100 and 1050 °C whereas between 1050 and 920 to 905 °C pyroxene of single composition crystallized. Below 920 to 905 °C, single composition Fe-rich clinopyroxene exsolved to augite and pigeonite. Initial appearance of titanomagnetite probably occurred near 990 °C and FMQ-1.5 whereas at and below 990 °C and ≥FMQ-1.5 titanomagnetite and single composition Fe-rich clinopyroxene may have started to react, producing ilmenite and olivine. However, judging from the most common titanomagnetite compositions, we infer that most of this reaction likely occurred between 950 and 900 °C at FMQ-1.0±0.2 and nearly simultaneously with pyroxene exsolution, thus producing assemblages of pigeonite, titanomagnetite, olivine, ilmenite, and augite. We deem this reaction as the most plausible explanation for the formation of the olivine+augite-dominated symplectites in Los Angeles. But we cannot preclude possible contributions to the symplectites from the shock-related alkali- and silica-rich glass or shocked plagioclase, and the breakdown of Fe-rich pigeonite compositions to olivine+augite+silica below 900 °C. Reactions between Fe-Ti oxides and silicate minerals in Los Angeles and other similar basaltic Martian meteorites can control the T-fO2 equilibration path during cooling, which may better explain the relative differences in fO2 among the basaltic Martian meteorites.  相似文献   
966.
The short-lived 182Hf-182W-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic 182Hf-182W-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 ε182W units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while 182Hf was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value.  相似文献   
967.
The influence of aqueous silica on gallium(III) hydrolysis in dilute (2 × 10−4mGa ≤ 5 × 10−3) and moderately concentrated (0.02 ≤ mGa ≤ 0.3) aqueous solutions was studied at ambient temperature, using high resolution X-ray absorption fine structure (XAFS) and nuclear magnetic resonance (NMR) spectroscopies, respectively. Results show that, in Si-free acidic solutions (pH < 3), Ga is hexa-coordinated with oxygens of H2O molecules and/or OH groups in the first coordination sphere of the metal. With increasing pH, these hydroxyl groups are progressively replaced by bridging oxygens (-O-), and polymerized Ga-hydroxide complexes form via Ga-O-Ga chemical bonds. In the 2.5-3.5 pH range, both XAFS and NMR spectra are consistent with the dominant presence of the Ga13 Keggin polycation, which has the same local structure as A113. Under basic pH (pH > 8), Ga exhibits a tetrahedral coordination, corresponding to Ga(OH)4 species, in agreement with previous NMR and potentiometric studies. Major changes in Ga hydrolysis have been detected in the presence of aqueous silica. Ga is tetra-coordinated, both in basic and acid (i.e., at pH > 2.7) Si-bearing solutions (0.01 ≤ mSi ≤ 0.2), and forms stable gallium-silicate complexes. In these species, Ga binds via bridging oxygen to 2 ± 1 silicons, with an average Ga-Si distance of 3.16 ± 0.05 Å, and to 2 ± 1 silicons, with an average Ga-Si distance of 3.39 ± 0.03 Å. These two sets of Ga-Si distances imply the formation of two types of Ga-silicate aqueous complex, cyclic Ga-Si2-3 species (formed by the substitution of Si in its tri-, tetra- or hexa-cyclic polymers by Ga atoms), and chainlike GaSi2-4 species (similar to those found for A1), respectively. The increase in the number of Si neighbors (a measure of the complex concentration and stability), in alkaline media, with increasing SiO2(aq) content and decreasing pH is similar to that for A1-Si complexes found in neutral to basic solutions. At very acid pH and moderate silica concentrations, the presence of another type of Ga-Si complex, in which Ga remains hexa-coordinated and binds to the silicon tetrahedra via the GaO6 octahedron corners, has also been detected. These species are similar to those found for Al3+ in acid solutions. Thus, as for aluminum, silicic acid greatly hampers Ga hydrolysis and enhances Ga mobility in natural waters via the formation of gallium-silicate complexes.  相似文献   
968.
The oxidation of Mn(II) by O2 to Mn(III) or Mn(IV) is thermodynamically favored under the pH and pO2 conditions present in most near surface waters, but the kinetics of this reaction are extremely slow. This work investigated whether reactive oxygen species, produced through illumination of humic substances, could oxidize Mn at an environmentally relavent rate. The simulated sunlight illumination of a solution containing 200 μM Mn(II) and 5 mg/L Aldrich humic acid buffered at pH 8.1 produced ∼19 μM of oxidized Mn (MnOx where x is between one and two) after 45 minutes. The major oxidants reponsible for this reaction appear to be photoproduced superoxide radical anion, O2, and singlet molecular oxygen, 1O2. The dependencies of MnOx formation on Mn(II), humic acid, and H+ concentration were characterized. A kinetic model based largely on published rate constants was established and fit to the experimental data. As expected, analysis of the model indicates that the key reaction rate controlling MnOx production is the rate of decomposition of a MnO2+ complex formed from the reaction of Mn(II) with O2. This rate is strongly dependent on the Mn(II) complexing ligands in solution. The MnOx production in the seawater sample taken from Bodega Bay, USA and spiked with 200 μM Mn(II) was well reproduced by the model. Extrapolations from the model imply that Mn photo-oxidation should be a significant reaction in typical surface seawaters. Calculated rates, 5.8 to 55 pM h−1, are comparable to reported rates of biological Mn oxidation, 0.07 to 89 pM h−1. Four fresh water samples that were spiked with 200 μM Mn(II) also showed significant MnOx production. Based on these results, it appears that Mn photo-oxidation could constitute a significant, and apparently unrecognized geochemical pathway in natural waters.  相似文献   
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号